Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 5


Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite weathering at historic mine sites Špania Dolina-Piesky and Ľubietová-Svätodušná, Slovakia

Anežka Borčinová Radková
  • Corresponding author
  • Department of Geological Sciences and Geological Engineering, Queen’s University, Miller Hall, 36 Union Street, Kingston, K7L 3N6 Ontario, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heather Jamieson
  • Department of Geological Sciences and Geological Engineering, Queen’s University, Miller Hall, 36 Union Street, Kingston, K7L 3N6 Ontario, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bronislava Lalinská-Voleková
  • Slovak National Museum, Natural History Museum, Vajanského nábr. 2, P.O.BOX 13, 810 06 Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juraj Majzlan / Martin Števko
  • Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, 6 Mlynska dolina G, SK-842 15 Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Chovan
  • Institute of Geological Engineering, Technical University of Ostrava, 17. listopadu,70833 Ostrava-Poruba, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-06 | DOI: https://doi.org/10.2138/am-2017-5616


The legacy of copper (Cu) mining at Špania Dolina-Piesky and Ľubietová-Svätodušná (central Slovakia) is waste rock and soil, surface waters, and groundwaters contaminated with antimony (Sb), arsenic (As), Cu, and other metals. Copper ore is hosted in chalcopyrite (CuFeS2) and sulfosalt solid-solution tetrahedrite-tennantite {Cu6[Cu4(Fe,Zn)2]Sb4S13–Cu6[Cu4(Fe,Zn)2]As4S13} that show widespread oxidation characteristic by olive-green color secondary minerals. Tetrahedrite-tennantite can be a significant source of As and Sb contamination. Synchrotron-based μ-XRD, μ-XRF, and μ-XANES combined with electron microprobe analyses have been used to determine the mineralogy, chemical composition, element distribution, and Sb speciation in tetrahedrite-tennantite oxidation products in waste rock. Our results show that the mobility of Sb is limited by the formation of oxidation products such as tripuhyite and roméite group mineral containing 36.54 wt% Sb for samples where the primary mineral chemical composition is close to tetrahedrite end-member. Antimony K-edge μ-XANES spectra of these oxidation products indicate that the predominant Sb oxidation state is 5+. Arsenic and Cu are also hosted by amorphous phases containing 6.23 wt% Sb on average and these are intergrown with tripuhyite and roméite. Antimony in this environment is not very mobile, meaning it is not easily released from solid phases to water, especially compared to As, Cu, and S. For samples where the primary sulfosalt is close to tennantite composition, the oxidation products associated with tennantite relicts contain 2.43 wt% Sb and are amorphous. The variable solubility of the secondary minerals that have been identified is expected to influence mobility of Sb and As in near-surface environment.

Keywords: Tetrahedrite-tennantite weathering; waste rock; antimony; arsenic; supergene minerals; tripuhyite; roméite

References cited

  • Andráš, P., Lichý, A., Rusková, J., and Matúšková, L. (2008) Heavy metal contamination of the landscape Ľubietova deposit (Slovakia). Proceedings of World Academy of Science, Engineering and Technology, 34, ISSN 2070-3740, Venice, Italy, 97–100.Google Scholar

  • Andráš, P., Dirner, V., Kharbish, S., and Krnáč, J. (2013) Characteristics of heavy metal distribution at spoil dump-fields of Cu deposit Lubietova (Slovakia), Carpathian Journal of Earth and Environmental Sciences, 8, 87–96.Google Scholar

  • Arlt, T., and Diamond, L.W. (1998) Composition of tetrahedrite-tennantite and “schwazite” in the Schwaz silver mines, North Tyrol, Austria. Mineralogical Magazine, 62, 801–820.Google Scholar

  • Atencio, D., Andrade, M.B., Christy, A.G., Giere, R., and Kartashov, P.M. (2010) The Pyrochlore Supergroup of Minerals: Nomenclature. Canadian Mineralogist, 48, 673–698.Google Scholar

  • Baláž, P. (2000) Extractive Metallurgy of Activated Minerals, 277p. Elsevier, Amsterdam.Google Scholar

  • Berlepsch, P., Armbruster, T., Brugger, J., Criddle, A.J., and Graeser, S. (2003) Tripuhyite, FeSbO4—revisited. Mineralogical Magazine, 67, 31–46.Google Scholar

  • Bolanz, R.M., Bläss, U., Ackermann, S., Ciobota, V., Rösch, P., Tarcea, N., Popp, J., and Majzlan, J. (2013) The effect of antimonate, arsenate and phosphate on the transformation of ferrihydrite to goethite, hematite, feroxyhyte, and tripuhyite. Clays and Clay Minerals, 61, 11–25,Google Scholar

  • Bowell, R.J. (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, 9, 279–286.Google Scholar

  • Christy, A.G., and Gatedal, K. (2005) Extremely Pb-rich rock-forming silicates including a beryllian scapolite and associated minerals in a skarn from Långban, Värmland, Sweden. Mineralogical Magazine, 69, 995–1018.Google Scholar

  • Čillík, I., Kusein M., Makuša M., Šuchová M., Tupý P., Valko P., and Dvorš’nák J. (1986) Final report Glezúr-Piesky, Špania Dolina-Mária adit 31.12.1986, 136 p. ŠGÚDŠ-Geofond, Bratislava (in Slovak).Google Scholar

  • Courtin-Nomade, A., Rakotoarisoa, O., Bril, H., Grybos, M., Forestier, L., Foucher, F., and Kunz, M. (2012) Weathering of Sb-rich mining and smelting residues: Insight in solid speciation and soil bacteria toxicity. Chemie der Erde: Geochemistry, 72, 29–39.Google Scholar

  • DeSisto, S.L., Jamieson, H.E., and Parsons, M.B. (2011) Influence of hardpan layers on arsenic mobility in historical gold mine tailings. Applied Geochemistry, 26, 2004–2018.Google Scholar

  • Diemar, G.A. (2008) Supergene dispersion of antimony and geochemical exploration model for antimony ore deposits, 70 p. Ph.D. thesis. University of Western Sydney.Google Scholar

  • Diemar, G.A., Filella, M., Leverett, P., and Williams, P.A. (2009) Dispersion of antimony from oxidizing ore deposits. Pure and Applied Chemistry, 81, 1547–1553.Google Scholar

  • Ertl, A., and Brandstätter, F. (2000) Protopartzite or thrombolite from magnesite quarry Veitsch, Sattlerkogel, Styria, Austria. Joannea-Mineralogie, 1, 27–30 (in German).Google Scholar

  • Figuschová, M. (1977a) Secondary copper minerals from Špania Dolina. In Hornická Příbram ve vědě a technice—sekce mineralogie rudných ložisek, 55–70 (in Slovak).Google Scholar

  • Figuschová, M. (1977b) Secondary copper minerals from Ľubietová. In: Zborník referátov z konferencie Ložiskotvorné procesy Západných Karpát, Bratislava, 134–137 (in Slovak).Google Scholar

  • Filella, M., Williams, P.A., and Belzile, N. (2009) Antimony in the environment: knowns and unknowns. Environmental Chemistry, 6, 95–105.Google Scholar

  • Filippou, D., St-Germain, P., and Grammatikopoulos, T. (2007) Recovery of metal values from copper-arsenic minerals and other related resources. Mineral Processing and Extractive Metallurgy Review, 28, 247–298.Google Scholar

  • Flemming, R.L., Salzsauler, K., Sherriff, B.L., and Sidenko, N. (2005) Identification of scorodite in very fine-grained, high-sulfide arsenopyrite mine wastes using micro X-ray diffraction (µXRD). Canadian Mineralogist, 43, 1527–1537.Google Scholar

  • Franková, H., Čmielová, L., Klimko, T., Lacková, E., and Andráš, P. (2012) Comparative study of Cu, As and Sb toxicity between dump-fields of abandoned Cu-deposits Ľubietová and Špania Dolina (Central Slovakia). Carpathian Journal of Earth and Environmental Sciences, 4, 79–88.Google Scholar

  • Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Hausermann, D. (1996) Two-dimensional detector software: From real detector to idealized image or two-theta scan. High Pressure Research, 14, 235–248.Google Scholar

  • Harris, D.L., Lottermoser, B.G., and Duchesne, J. (2003) Ephemeral acid mine drainage at the Montalbion silver mine, north Queensland. Australian Journal of Earth Sciences, 50, 797–809.Google Scholar

  • Hiller, E., Petrák, M., Tóth, R., Lalinská-Voleková, B., Jurkovič, Ľ., Kučerová, G., Radková A., Šottník, P., and Vozár, J. (2013) Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Environmental Science and Pollution Research, 20, 7627–7642.Google Scholar

  • Ilavský, J., Vozárová, A., and Vozár, J. (1994) Ľubietová—exploration boreholes: Lu-1, Lu-2 a Lu-3. 77p. ŠGÚDŠ-Geofond, Bratislava (in Slovak).Google Scholar

  • Johnson, N.E., Craig, J.R., and Rimstidt, J.D. (1986) Compositional trends in tetrahedrite. Canadian Mineralogist, 397, 385–397.Google Scholar

  • King, R.J. (2001) The tetrahedrite group. Geology Today, 17, 77–80.Google Scholar

  • Klimko, T., Lalinská, B., Majzlan, J., Chovan, M., Kučerová, G., and Paul, C. (2011) Chemical composition of weathering products in neutral and acidic mine tailings from stibnite exploitation in Slovakia. Journal of GEOsciences, 6, 327–340.Google Scholar

  • Koděra, M., Andrusovová-Vlčeková, G., Belešová, O., Briatková, D., Dávidová, Š., Fejdiová, V., Hurai, V., Chovan, M., Nelišerová, E., and Ženiš, P. (1990) Topographic Mineralogy of Slovakia, Volume 3. Veda (in Slovak).Google Scholar

  • Kusein, M., and Ma’nová, V. (2002) Final report: Complex evaluation of closed deposit Špania Dolina. 172 p. ŠGÚDŠ-Geofond, Bratislava (in Slovak).Google Scholar

  • Lalinská-Voleková, B., Majzlan, J., Klimko, T., Chovan, M., Kučerová, G., Michňová, J., Hovorič, R., Gottlicher, J., and Steininger, R. (2012) Mineralogy of weathering products of Fe-As-Sb mine wastes and soils at several Sb deposits in Slovakia. Canadian Mineralogist, 50, 481–500.Google Scholar

  • Lengke, M.F., Sanpawanitchakit, C., and Tempel, R.N. (2009) The oxidation and dissolution of arsenic-bearing sulfides. Canadian Mineralogist, 47, 593–613.Google Scholar

  • Leverett, P., Reynolds, J.K., Roper, A.J., and Williams, P.A. (2012) Tripuhyite and schafarzikite: Two of the ultimate sinks for antimony in the natural environment. Mineralogical Magazine, 76, 891–902.Google Scholar

  • Lynch, J. (1989) Large-scale hydrothermal zoning reflected in the tetrahedrite-freibergite solid solution, Keno Hill Ag-Pb-Zn district, Yukon. Canadian Mineralogist, 27, 383–400.Google Scholar

  • Majzlan, J., Lalinská, B., Chovan, M., Jurkovič, L., Milovská, S., and Göttlicher, J. (2007) The formation, structure, and ageing of As-rich hydrous ferric oxide at the abandoned Sb deposit Pezinok (Slovakia). Geochimica et Cosmochimica Acta, 71, 4206–4220.Google Scholar

  • Majzlan, J., Lalinská, B., Chovan, M., Bläss, U., Brecht, B., Göttlicher, J., Steininger, R., Hug, K., Ziegler, S., and Gescher, J. (2011) A mineralogical, geochemical, and microbiogical assessment of the antimony- and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia. American Mineralogist, 96, 1–13.Google Scholar

  • Michňová, J., and Ozdín, D. (2010) Genetic study of the primary hydrothermal mineralization in Špania Dolina and Ľubietová ore districts (Slovakia, Western Carpathians). Mineralogica et Petrographica Acta, 6, 237.Google Scholar

  • Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W., Nickel, E.H., Graeser, S., Karup-Mřller, and others. (2008) Sulfosalt systematics: a review. Report of the Sulfosalt Sub-Committee of the IMA Commission on Ore Mineralogy, 7–46.Google Scholar

  • Moldovan, B.J., and Hendry, M.J. (2005) Characterizing and quantifying controls on arsenic solubility over a pH range of 1–11 in a uranium mill-scale experiment. Environmental Science & Technology, 37, 873–879.Google Scholar

  • Nickel, E.H. (1984) The mineralogy and geochemistry of the weathering profile of the Teutonic Bore Cu-Pb-Zn-Ag sulphide deposit. Journal of Geochemical Exploration, 22, 239–264.Google Scholar

  • Nordstrom, K.D., Majzlan, J., and Königsberger, E. (2014) Thermodynamic properties for arsenic minerals and aqueous species. Reviews in Mineralogy & Geochemistry, 79, 217–255.Google Scholar

  • Novotný J. (1960) Mineralogical and Geochemical Assessment of Locality Špania Dolina-Piesky. 145 p. ŠGÚDŠ-Geofond, Bratislava (in Slovak).Google Scholar

  • Pauliš, P. (1981) Chalcophyllite occurrence at Ľubietová-Svätodušná. Časopis pro Mineralogii a Geologii, 26, 213 (in Czech).Google Scholar

  • Polák, M., Filo, I., Havrila, M., Bezák, V., Kohút, M., Kováč, P, Vozár, J., Mello, J., Maglay, J., Elečko, M., and others. (2003) Geological map of Starohorské mountains, Čier’naž and the northern part of Zvolenská valley. 1:50 000. ŠGÚDŠ-Geofond, Bratislava (in Slovak).Google Scholar

  • Ravel, B., and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537–541.Google Scholar

  • Regásek F. (1973) Mineralogical and geochemical study of sulfidic mineralization at Piesky (Špania Dolina), 10 p. ŠGÚDŠ-Geofond, Bratislava (in Slovak).Google Scholar

  • Řídkošil, T. (1978) Secondary copper minerals, Špania Dolina-Piesky, Slovakia. Časopis pro Mineralogii a Geologii, 23, 436–437 (in Czech).Google Scholar

  • Řídkošil, T. (2007) Secondary copper minerals from Ľubietová, Slovakia. Minerál, 15, 433–437 (in Czech).Google Scholar

  • Řídkošil T., and Medek Z. (1981) New findings from Svätodušná (central Slovakia). Časopis pro mineralogii a geologii, 26, 1, 91 (in Czech).Google Scholar

  • Řídkošil, T., and Povondra, P. (1982) New data about antlerite from Špania Dolina-Piesky, Slovakia. Časopis pro Mineralogii a Geologii, 27, 79–84 (in Czech).Google Scholar

  • Ritchie, V.J., Ilgen, A.G., Mueller, S.H., Trainor, T.P., and Goldfarb, R.J. (2013) Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska. Chemical Geology, 335, 172–188.Google Scholar

  • Roper, A.J., Williams, P.A., and Filella, M. (2012) Secondary antimony minerals: Phases that control the dispersion of antimony in the supergene zone. Chemie der Erde: Geochemistry, 72, 9–14.Google Scholar

  • Roper, A.J., Leverett, P., Murphy, T.D., and Williams, P.A. (2015) Stabilities of byströmite, MgSb2O6, ordoñezite, ZnSb2O6 and rosiaite, PbSb2O6, and their possible roles in limiting antimony mobility in the supergene zone. Mineralogical Magazine, 79, 537–544.Google Scholar

  • Rusínová, P., Kučerová, G., and Lalinská-Voleková B. (2014) Mineralogical study of synthetic and natural tripuhyite FeSbO4. Proceedings of the International Symposium CEMC 2014, 126–127. Masaryk University, Brno, Czech Republic.Google Scholar

  • Sejkora, J., Števko, M., and Macek, I. (2013) Contribution to chemical composition of tetrahedrite from the Piesky copper deposit, the Špania Dolina ore district, central Slovakia. Bulletin mineralogicko-petrologickeho oddělení Národního muzea (Praha), 21, 89–103.Google Scholar

  • Škácha, P., Sejkora J., Litochleb J., and Hofman, P. (2009) The occurrence of cuprostibite in the Příbram uranium-base metals ore district (the shaft 16, Příbram—Háje), Czech Republic. Bulletin Mineralogicko-petrografického oddělení Národního muzea v Praze, 17, 73–78 (in Czech).Google Scholar

  • Števko, M. (2014) Mineralogical characterization of supergene copper arsenates from the Novoveská Huta, Poniky and Špania Dolina localities, 189 pp. Ph.D. thesis, Comenius University, Bratislava (in Slovak).Google Scholar

  • Števko, M., and Sejkora, J. (2012) Supergene arsenates of copper from the Piesky deposit, Špania Dolina, Central Slovakia. Acta Mineralogica Petrographica, 7, 130.Google Scholar

  • Vassileva, R.D., Atanassova, R., and Kouzmanov, K. (2014) Tennantite-tetrahedrite series from the Madan Pb-Zn deposits, Central Rhodopes, Bulgaria. Mineralogy and Petrology, 108, 515–531.Google Scholar

  • Vozárová, A., Konečný, P., Vďačný, M., Vozár, J., and Šarinová, K. (2014) Provenance of Permian Malužiná Formation sandstones (Hronicum, Western Carpathians): evidence from monazite geochronology. Geologica Carpathica, 65, 329–338.Google Scholar

  • Walker, S.R., Jamieson, H.E., Lanzirotti, A., Andrade, C.F., and Hall, G.E.M. (2005) The speciation of arsenic in iron oxides in mine wastes from the Giant gold mine, N.W.T.: Application of synchrotron micro-XRD and micro-XANES at the grain scale. Canadian Mineralogist, 43, 1205–1224.Google Scholar

  • Walker, S.R., Parsons, M.B., Jamieson, H., and Lanzirotti, A. (2009) Arsenic mineralogy of near-surface tailings and soils: Influences on arsenic mobility and bioaccessibility in the Nova Scotia gold mining districts. Canadian Mineralogist, 47, 533–556.Google Scholar

  • Wilson, N.J., Craw, D., and Hunter, K. (2004) Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environmental Pollution, 129, 257–266.Google Scholar

  • Žebrák, P. (1986) Prehistorical copper mining, Špania Dolina-Piesky. AVANS, 256–257 (in Czech).Google Scholar

  • Zedlitz, O. (1932) Die Kristallstruktur von Romeit und Schneebergit. Zeitschrift für Kristallographie, 81, 253–263 (in German).Google Scholar

About the article

Received: 2015-10-26

Accepted: 2016-12-16

Published Online: 2017-05-06

Published in Print: 2017-05-24

Citation Information: American Mineralogist, Volume 102, Issue 5, Pages 1091–1100, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5616.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in