Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 5


Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China

Keke Sun
  • Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bin Chen
  • Corresponding author
  • Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
  • School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-06 | DOI: https://doi.org/10.2138/am-2017-5654


The Shimensi deposit (South China) is a newly discovered W-Cu-Mo polymetallic deposit with a reserve of 0.76 million tones WO3, one of the largest tungsten deposits in the world. We report elemental and Sr-Nd isotopic data for scheelites from the giant deposit, to determine the source region and genesis of the deposit. Scheelite is the most important ore mineral in the Shimensi deposit. Trace elements (including REEs) and Nd-Sr isotopic compositions of scheelites were used to constrain the origin of the mineralizing fluids and metals. Our data reveal that the REEs of scheelite are mainly controlled by the substitution mechanism 3Ca2+ = 2REE3++ Ca, where Ca is a Ca-site vacancy. Scheelites from the Shimensi deposit show negative Eu anomalies in some samples, but positive Eu anomalies in others in the chondrite-normalized REE patterns. The variation of Eu anomalies recorded the ore-forming processes. Considering the close spatial and temporal relationship between the mineralization and porphyritic granite, we think the negative Eu anomalies were inherited from the porphyritic granite and the positive ones from destruction of plagioclase of country rock during fluid-rock interaction. The variation of cathodeluminescence (CL) color of a single scheelite from red to blue and to yellow was likely associated with the increase of REE contents. The scheelites hosted in the Mesozoic porphyritic granite with negative Eu anomalies formed in a primitive ore-forming fluid, whereas the scheelites hosted in Neoproterozoic granite with positive Eu anomalies precipitated in an evolved ore-forming fluid. The high Nb, Ta, LREE contents, and LREE-enriched REE patterns of scheelites from the Shimensi deposit reveal a close relationship with magmatic hydrothermal fluids.

The scheelites from the Shimensi deposit are characterized by low εNd(t) values (–6.1 ≈ –8.1) and unusually high and varied initial 87Sr/86Sr ratios (0.7230~0.7657). The εNd(t) values of scheelites are consistent with those of the Mesozoic porphyritic granite, but the Sr isotopic ratios are significantly higher than those of the granites, and importantly, beyond the Sr isotopic range of normal granites. This suggests that the ore-forming fluids and metals cannot be attributed to the Mesozoic porphyritic granites alone, the local Neoproterozoic Shuangqiaoshan Group schists/gneisses with high Rb/Sr ratios and thus radiogenic Sr isotopic compositions should have contributed to the ore-forming fluids and metals, particularly, in a later stage of ore-forming process, by intense fluid-rock interaction. This is different from a commonly accepted model that the ore-forming fluids and metals were exsolved exclusively from the granite plutons.

Keywords: Scheelite; trace element; REE; Sr-Nd isotopes; Shimensi

References cited

  • Allen, C.C., and Folinsbee, R.E. (1944) Scheelite veins related to porphyry intrusives, Hollinger Mine. Economic Geology, 39, 340–348.Google Scholar

  • Audétat, A., Günther, D., and Heinrich, C.A. (2000) Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-W-F-mineralized Mole Granite (Australia). Geochimica et Cosmochimica Acta, 64, 3373–3393.Google Scholar

  • Bell, K., Anglin, C.D., and Franklin, J.M. (1989) Sm-Nd and Rb-Sr isotope systermatics of scheelites: Possible implications for the age and genesis of vein-hosted gold deposits. Geology, 17, 500–504.Google Scholar

  • BGMRJX (Jiangxi Bureau of Geology and Mineral Resources). (1984) Regional geology of Jiangxi province. Geological Publishing House, 224 p.Google Scholar

  • Böhlke, J.K., and Kistler, R.W. (1986) Rb-Sr, K-Ar, and stable isotope evidence for the ages and sources of fluid components of gold-bearing quartz veins in the northern Sierra Nevada Foothills metamorphic belt, California. Economic Geology, 81, 296–322.Google Scholar

  • Brugger, J., Bettiol, A.A., Costa, S., Lahaye, Y., Bateman, R., Lambert, D.D., and Jamieson, D.N. (2000) Mapping REE distribution in scheelite using luminescence. Mineralogical Magazine, 64, 891–903.Google Scholar

  • Brugger, J., Mass, R., Lahaye, Y., Mcrae, C., Ghaderi, M., Costa, S., Lambert, D., Bateman, R., and Prince, K. (2002) Origins of Nd–Sr–Pb isotopic variations in single scheelite grains from Archaean gold deposits, Western Australia. Chemical Geology, 182, 203–225.Google Scholar

  • Brugger, J., Etschmann, B., Pownceby, M., Liu, W., Grundler, P., and Brewe, D. (2008) Oxidation state of europium in scheelite: Tracking fluid–rock interaction in gold deposits. Chemical Geology, 257, 26–33.Google Scholar

  • Burt, D.M. (1989) Compositional and phase relations among rare earth elements. Reviews in Mineralogy, 21, 259–307.Google Scholar

  • Cannon, R.S., and Murata, K.J. (1944) Estimating molybdenum content of scheelite or calcium tungstate by visual color of its fluorescence. U.S. Patent, 2,346661.Google Scholar

  • Chappell, B.W., and White, A.J.R. (1992) I-and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 1–26.Google Scholar

  • Charvet, J. (2013) The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block: an overview. Journal of Asian Earth Sciences, 74, 198–209.Google Scholar

  • Charvet, J., Shu, L.S., Faure, M., Choulet, F., Wang, B., Lu, H.F., and Le Breton, N. (2010) Structural development of the Lower Palaeozoic belt of South China: genesis of an intracontinental orogeny. Journal of Asian Earth Sciences, 39, 309–330.Google Scholar

  • Chen, J.F., and Jahn, B.M. (1998) Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284, 101–133.Google Scholar

  • Chen, B., Jahn, B.M., Wilde, S., and Xu, B. (2000) Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics, 328, 157–182.Google Scholar

  • Cottrant, J.F. (1981) Cristallochimie et géochimie des terres rares dans la scheelite: Application à quelques gisements francais. Ph.D. thesis, University of Paris-VI, France.Google Scholar

  • Darbyshire, D.P.F., Pitfield, P.E.J., and Campbell, S.D.G. (1996) Late Archean and Early Proterozoic gold-tungsten mineralization in the Zimbabwe Archean craton: Rb-Sr and Sm-Nd isotope constrains. Geology, 24, 19–22.Google Scholar

  • Deer, W.A., Howie, R.A., and Zussman, J. (1966) An Introduction to the Rock Forming Minerals, 515 p. Longman Press, New York.Google Scholar

  • Deng, Z.B., Liu, S.W., Zhang, L.F., Wang, Z.Q., Wang, W., Yang, P.T., Luo, P., and Guo, B.R. (2014) Geochemistry, zircon U-Pb and Lu-Hf isotopes of an Early Cretaceous intrusive suite in northeastern Jiangxi Province, South China Block: Implications for petrogenesis, crust/mantle interactions and geodynamic processes. Lithos, 200, 334–354.Google Scholar

  • DePaolo, D.J., and Getty, S.R. (1996) Models of isotopic exchange in reactive fluid-rock systems: implications for geochronology in metamorphic rocks. Geochimica et Cosmochimica Acta, 60, 3933–3947.Google Scholar

  • Dostal, J., Kontak, D.J., and Chatterjee, A. (2009) Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: Genetic implications. Mineralogy and Petrology, 97, 95–109.Google Scholar

  • Eichhorn, R., Holl, R., Jagoutz, E., and Schrer, U. (1997) Dating scheelite stages: A strontium, neodymium, lead approach from the Felbertal tungsten deposit, Central Alps, Austria. Geochimica et Cosmochimica Acta, 61, 5005–5022.Google Scholar

  • Farmer, G.L., and DePaolo, D.J. (1987) Nd and Sr isotope study of hydrothermally altered granite at San Manuel, Arizona: implications for element migration paths during the formation of porphyry copper ore deposits. Economic Geology, 182, 1142–1151.Google Scholar

  • Feng, C.Y., Zhang, D.Q., Xiang, X.K., Li, D.X., Qu, H.Y., Liu, J.N., and Xiao, Y. (2012) Re-Os isotopic dating of molybdenite from the Dahutang tungsten deposit in northwestern Jiangxi Province and its geological implication. Acta Petroligica Sinica, 28, 3858–3868.Google Scholar

  • Frei, R., Nagler, T.F., Schonberg, R., and Kramers, J.D. (1998) Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization—genetic tracing and age constrains of crustal hydrothermal activity. Geochimica et Cosmochimica Acta, 62, 1925–1936.Google Scholar

  • Ghaderi, M., Palin, J.M., Campbell, I.H., and Sylvester, P.J. (1999) Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia. Economic Geology, 94, 423–437.Google Scholar

  • Goldmann, S., Melcher, F., Gäbler, H.E., Dewaele, S., De Clercq, F., and Muchez, P. (2013) Mineralogy and trace element chemistry of ferberite/reinite from tungsten deposits in central Rwanda. Minerals, 3, 121–144.Google Scholar

  • Grasser, R., and Scharmann, A. (1976) Luminescent sites in CaWO4 and CaWO4: Pb crystals. Journal of Luminescence, 12-13, 473–478.Google Scholar

  • Huang, L.C., and Jiang, S.Y. (2014) Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: geochronology, petrogenesis and their relationship with W-mineralization. Lithos, 202-203, 207–226.Google Scholar

  • Kempe, U., Belyatsky, B., Krymsky, R., Kremenetsky, A., and Ivanov, P. (2001) Sm–Nd and Sr isotope systematics of scheelite from the giant Au (–W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization. Mineralium Deposita, 36, 379–392.Google Scholar

  • Kent, A.J.R., Campbell, I.H., and McCulloch, M.T. (1995) Sm-Nd systematics of hydrothermal scheelite from the Mount Charlotte mine, Kalgoorlie, Western Australia: An isotopic link between gold mineralization and komatiites. Economic Geology, 90, 2329–2335.Google Scholar

  • Kononov, O.V. (1967) Photoluminescence characteristics of molybdenum-bearing scheelites. Doklady Akademiia Nauk SSSR, 175, 120–123.Google Scholar

  • Kroger, F.A. (1948) Some Aspects of the Luminescence of Solids. Elsevier, New York.Google Scholar

  • Kwak, T.A.P., and Tan, T.H. (1981) The geochemistry of zoning in skarn minerals at the King Island (Dolphin) mine. Economic Geology, 76, 468–497.Google Scholar

  • Li, X.H., Li, Z.X., Ge, W.C., Zhou, H.W., Li, W.X., Liu, Y., and Wingate, M.T.D. (2003) Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Research, 122, 45–83.Google Scholar

  • Liu, Y.J. (1997) Rocks and Formations in Jiangxi Province, 381 p. China University of Geosciences Press, Wuhan.Google Scholar

  • Liu, Y.S., and Ma, D.S. (1987) Geochemistry of Tungsten, 217 p. Science Press, Beijing. (in Chinese).Google Scholar

  • Liu, Y.J., Li, Z.L., and Ma, D.S. (1982) The geochemical studies of tungstenbearing formation in South China. Science in China (Series B), 10, 939–950.Google Scholar

  • Lottermoser, B.G. (1991) Rare-earth elements and hydrothermal ore formation. Ore Geology Reviews, 7, 25–41.Google Scholar

  • Ma, X., and Xiang, X.K. (1993) Preliminary study of the Nd isotopic model ages of the Precambrian metamorphic stratum in northeastern Jiangxi Province. Scientia Geologica Sinica, 28, 145–150.Google Scholar

  • Mao, Z.H., Cheng, Y.B., Liu, J.J., Yuan, S.D., Wu, S.H., Xiang, X.K., and Luo, X.H. (2013) Geology and molybdenite Re–Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxi Province, China. Ore Geology Reviews, 53, 422–433.Google Scholar

  • Mao, Z.H., Liu, J.J., Mao, J.W., Deng, J., Zhang, F., Meng, X.Y., Xiong, B.K., Xiang, X.K., and Luo, X.H. (2014) Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Research, .CrossrefGoogle Scholar

  • Marshall, D.J. (1988) Cathodoluminescence of Geological Materials, 146 p. Unwin Hyman, Boston.Google Scholar

  • Mueller, A.G., Laeter, J.R.D., David, I., and Groves, D.I. (1991) Strontium isotope systematics of hydrothermal minerals from epigenetic Archean gold deposits in the Yilgarn Block, Western Australia. Economic Geology, 86, 780–809.Google Scholar

  • Nassau, K., and Loiacono, G.M. (1963) Calcium tungstate-III: trivalent rare earth substitution. Journal of Physical Chemistry Solids, 24, 1503–1510.Google Scholar

  • No. 916 Geological Team, Jiangxi Bureau of Geology, Mineral Resources, Exploration and Development (2012) The Exploration Report of the Shimensi, North Portion of the Dahutang Tungsten Deposit, Wuning County, Jiangxi Province. Jiangxi Jutong Mining Corporation, 224 p.Google Scholar

  • Noble, S., Spooner, E.T.C., and Harris, F. (1984) The Logtung large tonnage, low-grade W (scheelite)-Mo porphyry deposit, south-central Yunkon Territory. Economic Geology, 79, 848–868.Google Scholar

  • Peng, J.T., Hu, R.Z., Zhao, J.H., and Fu, Y.Z. (2003) Scheelite Sm-Nd dating and quartz Ar-Ar dating from Woxi Au-Sb-W deposit western Hunan. Chinese Science Bulletin, 48, 2640–2646.Google Scholar

  • Raimbault, L., Baumer, A., Dubru, M., Benkerrou, C., Croze, V., and Zahm, A. (1993) REE fractionation between scheelite and apatite in hydrothermal conditions. American Mineralogist, 78, 1275–1285.Google Scholar

  • Reyf, F.G. (1997) Direct evolution of W-rich brines from crystallizing melt within the Mariktikan granite pluton, west Transbaikalia. Mineralium Deposita, 32, 475–490.Google Scholar

  • Roberts, S., Palmer, M.R., and Waller, L. (2006) Sm-Nd and REE characteristics of tourmaline and scheelite from the Bjorkdal gold deposit, northern Sweden. Evidence of an intrusion-related gold deposit? Economic Geology, 101, 1415–1425.Google Scholar

  • Rösler, H.J., Baumann, L., and Jung, W. (1968) Post magmatic mineral deposits of the northern edge of the Bohemian Massif: 23th International Geological Congress, Prague, Guide to Excursions 22 AC, 57 p.Google Scholar

  • Rudnick, R.L., and Gao, S. (2003) Composition of the continental crust. In R.L. Rudnick, Ed., Treatise on Geochemistry, 64 p. Elsevier, New York.Google Scholar

  • Shoji, T., and Sasaki, N. (1978) Fluorescent color and X-ray powder data of synthesized scheelite-powellite series as guides to determine its composition. Mining Geology, 28, 397–404.Google Scholar

  • Shore, M., and Fowler, A.D. (1996) Oscillatory zoning in minerals: a common phenomenon. Canadian Mineralogist, 34, 1111–1126.Google Scholar

  • Shu, L.S., and Charvet, J. (1996) Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone: With HP metamorphism and ophiolitic mélange (Jiangnan region, south China). Tectonophysics, 267, 291–302.Google Scholar

  • Song, G.X., Qin, K.Z., Li, G.M., Evans, N.J., and Chen, L. (2014) Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area, Anhui Province, Eastern China. American Mineralogist, 99, 303–317.Google Scholar

  • Sun, S.S., and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In A.D. Saunders and M.J. Norry, Eds., Magmatism in the Ocean Basins. Geological Society of London, Special Publication 42, U.K, 313–345.Google Scholar

  • Thomas, R., Förster, H.J., Rickers, K., and Webster, J.D. (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study. Contributions to Mineralogy and Petrology, 148, 582–601.Google Scholar

  • Tomschi, H.P., Oberthür, T., Saager, R., and Kramers, J. (1986) Geochemical and mineralogical data on the genesis of the Mazowe gold field in the Harare Bindura greenstone belt, Zimbabwe [ext. abs]. Geocongress’86, Johannesburg, South Africa 1986, Extended Abstracts, 345–348.Google Scholar

  • Tyson, R.M., Hemphill, W.R., and Theisen, A.F. (1988) Effect of W:Mo ratio on the shift of excitation and emission spectra in the scheelite-powellite series. American Mineralogist, 73, 1145–1154.Google Scholar

  • Uspensky, E., Brugger, J., and Graeser, S. (1998) REE geochemistry systematics of scheelite from the Alps using luminescence spectroscopy: from global regularities to local control. Schweizerische Mineralogische and Petrographische Mitteilungen, 78, 33–56.Google Scholar

  • Voicu, G., Bardoux, M., Stevenson, R., and Jebrak, M. (2000) Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai, Guiana Shield: implications for ore fluid source and flow path during the formation of orogenic gold deposits. Mineralium Deposita, 35, 302–314.Google Scholar

  • Wang, J., and Li, Z.X. (2003) History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Research, 122, 141–158.Google Scholar

  • Wang, R.C., Zhu, J.C., Zhang, W.L., Xie, L., Yu, A.P., and Che, X.D. (2008) Ore-forming mineralogy of W-Sn granites in the Nanling Range: Concept and case study. Geological Journal of China Universities, 14, 485–495.Google Scholar

  • Wang, Y.J., Fan, W.M., Zhang, G.W., and Zhang, Y.H. (2013) Phanerozoic tectonics of the South China Block: key observations and controversies. Gondwana Research, 23, 1273–1305.Google Scholar

  • Wang, J., Zhou, X.L., Deng, Q., Fu, X.G., Duan, T.Z., and Guo, X.M. (2014a) Sedimentary successions and the onset of the Neoproterozoic Jiangnan subbasin in the Nanhua rift, South China. International Journal of Earth Science (Geologische Rundschau): .CrossrefGoogle Scholar

  • Wang, X.L., Zhou, J.C., Griffin, W.L., Zhao, G.C., Yu, J.H., Qiu, J.S., Zhang, Y.J., and Xing, G.F. (2014b) Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogeny, China. Precambrian Research, 242, 154–171.Google Scholar

  • Wang, H., Feng, C.Y., Li, D.X., Xiang, X.K., and Zhou, J.H. (2015) Sources of granitoids and ore-forming materials of Dahutang tungsten deposit in northern Jiangxi Province: Constrains from mineralogy and isotopic tracing. Acta Petrologica Sinica, 31, 725–739.Google Scholar

  • Webster, J., Thomas, R., Förster, H.J., Seltmann, R., and Tappen, C. (2004) Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Mineralium Deposita, 39, 452–472.Google Scholar

  • Wu, R.X., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Zhang, S.B., Liu, X.M., and Wu, F.Y. (2006) Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 146, 179–212.Google Scholar

  • Xu, K.Q. (1957) Finding of skarn Ca-W deposit in Yaogangxian W-Mn-Fe mine in Hunan Province and the genesis relation between the two kinds of deposits. Acta Geological Sinica, 2, 117–151.Google Scholar

  • Yao, J.L., Shu, L.S., Santosh, M., and Li, J.Y. (2013) Geochronology and Hf isotope of detrital zircons from Precambrian sequences in the eastern Jiangnan orogeny: constraining the assembly of Yangtze and Cathaysia Blocks in South China. Journal of Asian Earth Sciences, 74, 225–243.Google Scholar

  • Zaw, K., and Singoyi, B. (2000) Formation of magnetite-scheelite skarn mineralization at Kara, Northwestern Tasmania: evidence from mineral chemistry and stable isotopes. Economic Geolgoy, 95, 1215–1230.Google Scholar

  • Zhang, Y.X., Liu, Y.M., Gao, S.D., and He, Q.G. (1990) Earth elements geochemical characteristics of tungsten minerals: A distinguishing sign for ore-forming type. Geochimica, 19, 11–20.Google Scholar

  • Zhang, Y.J., Liao, S.B., Zhou, X.H., Yang, J., Yu, M.G., Jiang, R., Zhao, X.L., Chen, Z.H., Zhao, L., and Huang, W.C. (2012) Element characteristics and prominence analysis of meta-argillo-arenaceous rocks in Zhanggongshan area, Anhui-Jiangxi border region. Geology in China, 39, 1183–1198.Google Scholar

  • Zheng, Y.F., Zhang, S.B., Zhao, Z.F., Wu, Y.B., Li, X.H., Li, Z.X., and Wu, F.Y. (2007) Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos, 96, 127–150.Google Scholar

  • Zhou, X.M., and Li, W.X. (2000) Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326, 269–287.Google Scholar

  • Zhou, X.M., Sun, T., Shen, W.Z., Shu, L.S., and Niu, Y.L. (2006) Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29, 26–33.Google Scholar

About the article

Received: 2015-12-16

Accepted: 2016-12-16

Published Online: 2017-05-06

Published in Print: 2017-05-24

Citation Information: American Mineralogist, Volume 102, Issue 5, Pages 1114–1128, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5654.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in