Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 5

Issues

Controls on trace-element partitioning among co-crystallizing minerals: Evidence from the Panzhihua layered intrusion, SW China

Lie-Meng Chen
  • State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xie-Yan Song
  • Corresponding author
  • State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rui-Zhong Hu
  • State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Song-Yu Yu
  • State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hai-Long He
  • State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, P.R. China
  • University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhi-Hui Dai
  • State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yu-Wei She
  • State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, P.R. China
  • University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wei Xie
  • State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-06 | DOI: https://doi.org/10.2138/am-2017-5804

Abstract

The factors and processes that control trace-element partitioning among co-crystallizing cumulus minerals in layered intrusions have long been controversial. Here we address this issue using new laser ablation ICP-MS trace element data for magnetite, ilmenite, and clinopyroxene from the Panzhihua layered intrusion in the Emeishan large igneous province, SW China. The cumulus minerals display strong Ni, Co, and Cr depletions, indicative of parental magmas low in concentration of these elements probably due to prior sulfide removal and the fractionation of chromite or Cr-magnetite in a staging magma chamber at depth. Both magnetite and clinopyroxene show cyclical variations in some transition elements (e.g., Cr, V, and Ni) along the stratigraphic section. The average concentrations of these transition elements in magnetite are positively correlated with those in clinopyroxene, likely resulting from co-crystallization of magnetite and clinopyroxene. The incompatible element (e.g., Zr, Hf, and Nb) concentrations of the cumulus minerals from the Lower Zone are highly variable compared to those of the Middle and Upper Zones. These large variations in trace element compositions are attributed to a “trapped liquid shift” in the Lower Zone. Ilmenite crystals from the Panzhihua intrusion may have undergone extensive modification of transition elements during subsolidus re-equilibration with magnetite, leading to the decoupled variations of transition elements in ilmenite across the Lower Zone stratigraphy. Our study indicates that systematic trace element variations of the main cumulus mineral assemblage, rather than a single mineral, need to be considered to better constrain the magmatic differentiation and elemental fractionation of layered intrusions.

Keywords: Mineral trace element geochemistry; Fe-Ti oxides; co-crystallization; Panzhihua layered intrusion; Emeishan large igneous province

References cited

  • Aignertorres, M., Blundy, J., Ulmer, P., and Pettke, T. (2007) Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contributions to Mineralogy and Petrology, 153, 647–667.Google Scholar

  • Ali, J.R., Thompson, G.M., Zhou, M.-F., and Song, X.-Y (2005) Emeishan large igneous province, SW China. Lithos, 79, 475–489.Google Scholar

  • Arndt, N., Jenner, G., Ohnenstetter, M., Deloule, E., and Wilson, A. (2005) Trace elements in the Merensky Reef and adjacent norites Bushveld Complex South Africa. Mineralium Deposita, 40, 550–575.Google Scholar

  • Bai, Z.-J., Zhong, H., Naldrett, A.J., Zhu, W.-G., and Xu, G.-W. (2012) Whole-rock and mineral composition constraints on the genesis of the Giant Hongge Fe–Ti–V oxide deposit in the Emeishan Large Igneous Province, Southwest China. Economic Geology, 107, 507–524.Google Scholar

  • Bai, Z.-J., Zhong, H., Li, C., Zhu, W.-G., He, D.-F., and Qi, L. (2014) Contrasting parental magma compositions for the Hongge and Panzhihua magmatic Fe–Ti–V oxide deposits, Emeishan large igneous province, SW China. Economic Geology, 109, 1763–1785.Google Scholar

  • Bai, Z.-J., Zhong, H., Li, C., Zhu, W.-G., He, D.-F., and Hu, W.-J. (2016) Association of cumulus apatite with compositionally unusual olivine and plagioclase in the Taihe Fe-Ti oxide ore-bearing layered mafic-ultramafic intrusion: Petrogenetic significance and implications for ore genesis. American Minerlogist, 101, 2168–2175.Google Scholar

  • Barnes, S. (1986) The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contributions to Mineralogy and Petrology, 93, 524–531.Google Scholar

  • Barnes, S.J., Maier, W.D., and Ashwal, L.D. (2004) Platinum-group element distribution in the main zone and upper zone of the Bushveld Complex, South Africa. Chemical Geology, 208, 293–317.Google Scholar

  • Beattie, P. (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: Implications for the nature of mineral/melt partitioning. Chemical Geology, 117, 57–71.Google Scholar

  • Cawthorn, R.G. (1996) Layered Intrusions, 519 p. Elsevier Science.Google Scholar

  • Cawthorn, R.G. (2007) Cr and Sr: Keys to parental magmas and processes in the Bushveld Complex, South Africa. Lithos, 95, 381–398.Google Scholar

  • Cawthorn, R.G. (2013) Rare earth element abundances in apatite in the Bushveld Complex—A consequence of the trapped liquid shift effect. Geology, 41, 603–606.Google Scholar

  • Chen, L.-M., Song, X.-Y., Zhu, X.-K., Zhang, X.-Q., Yu, S.-Y., and Yi, J.-N. (2014) Iron isotope fractionation during crystallization and sub-solidus reequilibration: Constraints from the Baima mafic layered intrusion, SW China. Chemical Geology, 380, 97–109.Google Scholar

  • Chung, S.L., and Jahn, B.M. (1995) Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 23, 889–892.Google Scholar

  • Dare, S.A.S., Barnes, S.-J., and Beaudoin, G. (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination. Geochimica et Cosmochimica Acta, 88, 27–50.Google Scholar

  • Dare, S.A.S., Barnes, S.-J., Beaudoin, G., Méric, J., Boutroy, E., and Potvin-Doucet, C. (2014) Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49, 785–796.Google Scholar

  • Dygert, N., Liang, Y., and Hess, P. (2013) The importance of melt TiO2 in affecting major and trace element partitioning between Fe–Ti oxides and lunar picritic glass melts. Geochimica et Cosmochimica Acta, 106, 134–151.Google Scholar

  • Dygert, N., Liang, Y., Sun, C., and Hess, P. (2014) An experimental study of trace element partitioning between augite and Fe-rich basalts. Geochimica et Cosmochimica Acta, 132, 170–186.Google Scholar

  • Eales, H.V., and Cawthorn, R.G. (1996). The Bushveld Complex. In R.G. Cawthorn, Ed., Layered Intrusions, p. 181–229. Elsevier.Google Scholar

  • Egorova, V., and Latypov, R. (2013) Mafic–ultramafic sills: New insights from M- and S-shaped mineral and whole-rock compositional profiles. Journal of Petrology, 54, 2155–2191.Google Scholar

  • Fenner, C.N. (1929) The crystallization of basalts. American Journal of Science, 18, 225–253.Google Scholar

  • Forien, M., Tremblay, J., Barnes, S.-J., Burgisser, A., and Pagé, P. (2015) The role of viscous particle segregation in forming chromite layers from slumped crystal slurries: Insights from analogue experiments. Journal of Petrology, 56, 2425–2444.Google Scholar

  • Frost, B.R., and Lindsley, D.H. (1991) Occurrence of iron-titanium oxides in igneous rocks. Reviews in Mineralogy and Geochemistry, 25, 433–468.Google Scholar

  • Ganino, C., Arndt, N.T., Zhou, M.F., Gaillard, F., and Chauvel, C. (2008) Interaction of magma with sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion, SW China. Mineralium Deposita, 43, 677–694.Google Scholar

  • Ghiorso, M.S. and Sack, R.O. (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197–212.Google Scholar

  • Godel, B., Barnes, S.-J., and Maier, W.D. (2011) Parental magma composition inferred from trace element in cumulus and intercumulus silicate minerals: An example from the Lower and Lower Critical Zones of the Bushveld Complex, South-Africa. Lithos, 125, 537–552.Google Scholar

  • Hart, S.R., and Dunn, T. (1993) Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology, 113, 1–8.Google Scholar

  • Hauri, E.H., Wagner, T.P., and Grove, T.L. (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117, 149–166.Google Scholar

  • Hou, T., Zhang, Z., Encarnacion, J., Santosh, M., and Sun, Y. (2013) The role of recycled oceanic crust in magmatism and metallogeny: Os–Sr–Nd isotopes, U–Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe–Ti oxide deposit, central Emeishan large igneous province, SW China. Contributions to Mineralogy and Petrology, 165, 805–822.Google Scholar

  • Howarth, G.H., and Prevec, S.A. (2013) Trace element, PGE, and Sr–Nd isotope geochemistry of the Panzhihua mafic layered intrusion, SW China: Constraints on ore-forming processes and evolution of parent magma at depth in a plumbing-system. Geochimica et Cosmochimica Acta, 120, 459–478.Google Scholar

  • Howarth, G.H., Prevec, S.A., and Zhou, M.-F. (2013) Timing of Ti-magnetite crystallisation and silicate disequilibrium in the Panzhihua mafic layered intrusion: Implications for ore-forming processes. Lithos, 170–171, 73–89.Google Scholar

  • Jakobsen, J.K., Tegner, C., Brooks, C.K., Kent, A.J.R., Lesher, C.E., Nielsen, T.F.D., and Wiedenbeck, M. (2010) Parental magma of the Skaergaard intrusion: constraints from melt inclusions in primitive troctolite blocks and FG-1 dykes. Contributions to Mineralogy and Petrology, 159, 61–79.Google Scholar

  • Jang, Y.D., and Naslund, H.R. (2001) Major and trace element composition of Skaergaard plagioclase; geochemical evidence for changes in magma dynamics during the final stage of crystallization of the Skaergaard intrusion. Contributions to Mineralogy and Petrology, 140, 441–457.Google Scholar

  • Jang, Y.D., and Naslund, H.R. (2003) Major and trace element variation in ilmenite in the Skaergaard Intrusion: petrologic implications. Chemical Geology, 193, 109–125.Google Scholar

  • Jourdan, F., Bertrand, H., Scharer, U., Blichert-Toft, J., Feraud, G., and Kampunzu, A.B. (2007) Major and trace element and Sr, Nd, Hf and Pb isotope compositions of the Karoo large igneous province, Botswana-Zimbabwe: Lithosphere vs mantle plume contribution. Journal of Petrology, 48, 1043–1077.Google Scholar

  • Kamenetsky, V.S., Chung, S.L., Kamenetsky, M.B., and Kuzmin, D.V. (2012) Picrites from the Emeishan Large Igneous Province, SW China: A compositional continuum in primitive magmas and their respective mantle sources. Journal of Petrology, 53, 2095–2113.Google Scholar

  • Kloeck, W., and Palme, H. (1988) Partitioning of siderophile and chalcophile elements between sulfide, olivine, and glass in a naturally reduced basalt from Disko Island, Greenland. In G. Ryder, Ed., Proceedings of the Lunar and Planetary Science Conference, 18, 471–483. Pergamon, New York.Google Scholar

  • Laubier, M., Grove, T.L., and Langmuir, C.H. (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters, 392, 265–278.Google Scholar

  • Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., and Chen, H. (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257, 34–43.Google Scholar

  • Liu, P.-P., Zhou, M.-F., Chen, W.T., Boone, M., and Cnudde, V. (2014) Using multiphase solid inclusions to constrain the origin of the Baima Fe–Ti–(V) oxide deposit, SW China. Journal of Petrology, 55, 951–976.Google Scholar

  • Liu, P.-P., Zhou, M.-F., Chen, W.T., Gao, J.-F., and Huang, X.-W. (2015) In-situ LA-ICP-MS trace elemental analyses of magnetite: Fe–Ti–(V) oxide-bearing mafic–ultramafic layered intrusions of the Emeishan Large Igneous Province, SW China. Ore Geology Reviews, 65, 853–871.Google Scholar

  • Luan, Y., Song, X.-Y., Chen, L.-M., Zheng, W.-Q., Zhang, X.-Q., Yu, S.-Y., She, Y.-W., Tian, X.-L., and Ran, Q.-Y. (2014) Key factors controlling the accumulation of the Fe–Ti oxides in the Hongge layered intrusion in the Emeishan large igneous province, SW China. Ore Geology Reviews, 57, 518–538.Google Scholar

  • Lundgaard, K.L., Tegner, C., Cawthorn, R.G., Kruger, F.J., and Wilson, J.R. (2006) Trapped intercumulus liquid in the Main Zone of the eastern Bushveld Complex, South Africa. Contributions to Mineralogy and Petrology, 151, 352–369.Google Scholar

  • Maier, W.D., Barnes, S.J., and Groves, D.I. (2013) The Bushveld Complex, South Africa: formation of platinum–palladium, chrome- and vanadium-rich layers via hydrodynamic sorting of a mobilized cumulate slurry in a large, relatively slowly cooling, subsiding magma chamber. Miner Deposita, 48, 1–56.Google Scholar

  • Namur, O., Charlier, B., Toplis, M.J., Higgins, M.D., Liegeois, J.P., and Vander Auwera, J. (2010) Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada. Journal of Petrology, 51, 1203–1236.Google Scholar

  • Nielsen, T.F.D. (2004) The shape and volume of the Skaergaard intrusion, Greenland: Implications for mass balance and bulk composition. Journal of Petrology, 45(3), 507–530.Google Scholar

  • Pang, K.N., Li, C.S., Zhou, M.F., and Ripley, E.M. (2008a) Abundant Fe–Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions, SW China: evidence for early saturation of Fe–Ti oxides in ferrobasaltic magma. Contributions to Mineralogy and Petrology, 156, 307–321.Google Scholar

  • Pang, K.N., Zhou, M.F., Lindsley, D., Zhao, D., and Malpas, J. (2008b) Origin of Fe–Ti oxide ores in mafic intrusions: Evidence from the Panzhihua intrusion, SW China. Journal of Petrology, 49, 295–313.Google Scholar

  • Pang, K.N., Li, C.S., Zhou, M.F., and Ripley, E.M. (2009) Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic intrusion, SW China. Lithos, 110, 199–214.Google Scholar

  • Panxi Geological Unit (1984) Mineralization and exploration forecasting of V–Ti magnetite deposits in the Panzhihua–Xichang region. Unpublished, Panxi Geological Unit (in Chinese).Google Scholar

  • Peach, C.L., Mathez, E.A., and Keays, R.R. (1990) Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting. Geochimica et Cosmochimica Acta, 54, 3379–3389.Google Scholar

  • Pedersen, A.K. (1979) Basaltic glass with high-temperature equilibrated immiscible sulfide bodies with native iron from Disko, central west Greenland. Contributions to Mineralogy and Petrology, 69, 397–407.Google Scholar

  • Rajamani, V., and Naldrett, A.J. (1978) Partitioning of Fe, Co, Ni, and Cu between sulfide liquid and basaltic melts and the composition of Ni–Cu sulfide deposits. Economic Geology, 73, 82–93.Google Scholar

  • She, Y.-W., Yu, S.-Y., Song, X.-Y., Chen, L.-M., Zheng, W.-Q., and Luan, Y. (2014) The formation of P-rich Fe–Ti oxide ore layers in the Taihe layered intrusion, SW China: Implications for magma-plumbing system process. Ore Geology Reviews, 57, 539–559.Google Scholar

  • She, Y.-W., Song, X.-Y., Yu, S.-Y., and He, H.-L. (2015) Variations of trace element concentration of magnetite and ilmenite from the Taihe layered intrusion, Emeishan large igneous province, SW China: Implications for magmatic fractionation and origin of Fe–Ti–V oxide ore deposits. Journal of Asian Earth Sciences, 113, 1117–1131.Google Scholar

  • Shellnutt, J.G., Denyszyn, S.W., and Mundil, R. (2012) Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Research, 22, 118–126.Google Scholar

  • Song, X.Y., Zhou, M.F., Hou, Z.Q., Cao, Z.M., Wang, Y.L., and Li, Y.G. (2001) Geochemical constraints on the mantle source of the upper permian Emeishan continental flood basalts, southwestern China. International Geology Review, 43, 213–225.Google Scholar

  • Song, X.Y., Zhou, M.F., Cao, Z.M., and Robinson, P.T. (2004) Late permian rifting of the South China Craton caused by the Emeishan mantle plume? Journal of the Geological Society, 161, 773–781.Google Scholar

  • Song, X.Y., Qi, H.W., Robinson, P.T., Zhou, M.F., Cao, Z.M., and Chen, L.M. (2008) Melting of the subcontinental lithospheric mantle by the Emeishan mantle plume; evidence from the basal alkaline basalts in Dongchuan, Yunnan, Southwestern China. Lithos, 100, 93–111.Google Scholar

  • Song, X.Y., Qi, H.W., Hu, R.Z., Chen, L.M., Yu, S.Y., and Zhang, J.F. (2013) Formation of thick stratiform Fe–Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China. Geochemistry, Geophysics, Geosystems, 14, 712–732.Google Scholar

  • Tanner, D., Mavrogenes, J.A., Arculus, R.J., and Jenner, F.E. (2014) Trace element stratigraphy of the Bellevue Core, Northern Bushveld: Multiple magma injections obscured by diffusive processes. Journal of Petrology, 55, 859–882.Google Scholar

  • Tegner, C., Cawthorn, R.G., and Kruger, F.J. (2006) Cyclicity in the main and upper zones of the Bushveld complex, South Africa: Crystallization from a zoned magma sheet. Journal of Petrology, 47(11), 2257–2279.Google Scholar

  • Thy, P., Lesher, C.E., Nielsen, T.F.D., Brooks, C.K. (2006) Experimental constraints on the Skaergaard liquid line of descent. Lithos, 92, 154–180.Google Scholar

  • Toplis, M.J., and Carroll, M.R. (1995) An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. Journal of Petrology, 36, 1137–1170.Google Scholar

  • Tribuzio, R., Tiepolo, M., Vannucci, R., and Bottazzi, P. (1999) Trace element distribution within olivine-bearing gabbros from the Northern Apennine ophiolites (Italy): Evidence for post-cumulus crystallization in MOR-type gabbroic rocks. Contributions to Mineralogy and Petrology, 134, 123–133.Google Scholar

  • van Kan Parker, M., Mason, P.R.D., and van Westrenen, W. (2011) Trace element partitioning between ilmenite, armalcolite and anhydrous silicate melt: Implications for the formation of lunar high-Ti mare basalts. Geochimica et Cosmochimica Acta, 75, 4179–4193.Google Scholar

  • Vantongeren, J.A., and Mathez, E.A. (2013) Incoming magma composition and style of recharge below the Pyroxenite Marker, Eastern Bushveld Complex, South Africa. Journal of Petrology, 54, 1585–1605.Google Scholar

  • Wager, L.R., and Brown, G.M. (1967) Layered Igneous Rocks. Oliver and Boyd, Edinburgh.Google Scholar

  • Xing, C.M., Wang, C.Y., and Li, C.Y. (2014) Trace element compositions of apatite from the middle zone of the Panzhihua layered intrusion, SW China: Insights into the differentiation of a P- and Si-rich melt. Lithos, 204, 188–202.Google Scholar

  • Xu, Y.G., Chung, S.L., Jahn, B.M., and Wu, G.Y. (2001) Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 58, 145–168.Google Scholar

  • Xu, Y.G., He, B., Chung, S.L., Menzies, M.A., and Frey, F.A. (2004) Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 32, 917–920.Google Scholar

  • Zhang, Y.-X., Luo, Y.-N., and Yang, C.-X. (1988) The Panxi Rift. Geological Press, Beijing (in Chinese).Google Scholar

  • Zhang, Z.C., Mahoney, J.J., Mao, J.W., and Wang, F.H. (2006) Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47, 1997–2019.Google Scholar

  • Zhang, Z.C., Li, Y., Zhao, L., and Ai, Y. (2007) Geochemistry of three layered mafic-ultramafic intrusions in the Panxi area and constraints on their sources. Acta Petrologica Sinica, 23, 2339–2352.Google Scholar

  • Zhang, X.-Q., Zhang, J.-F., Yuan, P., Song, X.-Y., Guan, J.-X., and Deng, Y.-F. (2011) Implications of compositions of plagioclase and olivine on the formation of the Panzhihua V–Ti magnetite deposit, Sichuan Province. Acta Petrologica Sinica, 27, 3675–3688 (in Chinese with English abstract).Google Scholar

  • Zhang, X.-Q., Song, X.-Y., Chen, L.-M., Xie, W., Yu, S.-Y., Zheng, W.-Q., Deng, Y.-F., Zhang, J.-F., and Gui, S.-G. (2012) Fractional crystallization and the formation of thick Fe–Ti–V oxide layers in the Baima layered intrusion, SW China. Ore Geology Reviews, 49, 96–108.Google Scholar

  • Zheng, W.-Q., Deng, Y.-F., Song, X.-Y., Chen, L.-M., Yu, S.-Y., Zhou, G.-F., Liu, S.-R., and Xiang, J.-X. (2014) Composition and genetic significance of the ilmenite of the Panzhihua intrusion. Acta Petrologica Sinica, 30, 1432–1442.Google Scholar

  • Zhong, H., and Zhu, W.-G. (2006) Geochronology of layered mafic intrusions from the Pan–Xi area in the Emeishan large igneous province, SW China. Mineralium Deposita, 41, 599–606.Google Scholar

  • Zhong, H., Zhou, X.H., Zhou, M.F., Sun, M., and Liu, B.G. (2002) Platinum-group element geochemistry of the Hongge Fe-V-Ti deposit in the Pan-Xi area, southwestern China. Mineralium Deposita, 37(2), 226–239.Google Scholar

  • Zhong, H., Qi, L., Hu, R.-Z., Zhou, M.-F., Gou, T.-Z., Zhu, W.-G., Liu, B.-G., and Chu, Z.-Y. (2011) Rhenium-osmium isotope and platinum-group elements in the Xinjie layered intrusion, SW China: Implications for source mantle composition, mantle evolution, PGE fractionation and mineralization. Geochimica et Cosmochimica Acta, 75, 1621–1641.Google Scholar

  • Zhou, M.-F., Yan, D.-P., Kennedy, A.K., Li, Y., and Ding, J. (2002) SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arcmagmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196, 51–67.Google Scholar

  • Zhou, M.F., Robinson, P.T., Lesher, C.M., Keays, R.R., Zhang, C.J., and Malpas, J. (2005) Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V oxide deposits, Sichuan Province, SW China. Journal of Petrology, 46, 2253–2280.Google Scholar

  • Zhou, M.F., Arndt, N.T., Malpas, J., Wang, C.Y., and Kennedy, A.K. (2008) Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos, 103, 352–368.Google Scholar

  • Zhou, M.-F., Chen, W.T., Wang, C.Y., Prevec, S.A., Liu, Patricia P., and Howarth, G.H. (2013) Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China. Geoscience Frontiers, 4(5), 481–502.Google Scholar

About the article

Received: 2016-04-10

Accepted: 2016-12-23

Published Online: 2017-05-06

Published in Print: 2017-05-24


Citation Information: American Mineralogist, Volume 102, Issue 5, Pages 1006–1020, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5804.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in