Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 5

Issues

X-ray spectroscopy study of the chemical state of “invisible” Au in synthetic minerals in the Fe-As-S system

Alexander L. Trigub
  • Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia
  • National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova Square, 123182 Moscow, Russia
  • Physico-Technical Institute of UB RAS, Kirova st. 132, 426000 Izhevsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Boris R. Tagirov
  • Corresponding author
  • Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kristina O. Kvashnina
  • ESRF, The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
  • Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, P.O. Box 510119, 01314, Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dmitriy A. Chareev
  • Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia
  • Institute of Experimental Mineralogy (IEM RAS), 142432 Chernogolovka, Moscow Region, Russia
  • Institute of Physics and Technology, Ural Federal University, Mira st., 19, 620002 Ekaterinburg, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maximilian S. Nickolsky
  • Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrey A. Shiryaev
  • Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia
  • Institute of Physical Chemistry and Electrochemistry (IPCE RAS), 31 korp. 4, Leninsky Prospect, 119071 Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nina N. Baranova
  • Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI RAS), 19, Kosygina str., 119991 Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena V. Kovalchuk
  • Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrey V. Mokhov
  • Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-06 | DOI: https://doi.org/10.2138/am-2017-5832

Abstract

Minerals of the Fe-As-S system are the main components of Au ores in many hydrothermal deposits, including Carlin-type Au deposits, volcanogenic massive sulfide deposits, epithermal, mesothermal, sedimentary-hosted systems, and Archean Au lodes. The “invisible” (or refractory) form of Au is present in all types of hydrothermal ores and often predominates. Knowledge of the chemical state of “invisible” Au (local atomic environment/structural position, electronic structure, and oxidation state) is crucial for understanding the conditions of ore formation and necessary for the physical-chemical modeling of hydrothermal Au mineralization. In addition, it will help to improve the technologies of ore processing and Au extraction. Here we report an investigation of the chemical state of “invisible” Au in synthetic analogs of natural minerals (As-free pyrite FeS2, arsenopyrite FeAsS, and löllingite FeAs2). The compounds were synthesized by means of hydrothermal (pyrite) and salt flux techniques (in each case) and studied by X-ray absorption fine structure (XAFS) spectroscopy in a high-energy resolution fluorescence detection (HERFD) mode in combination with first-principles quantum chemical calculations. The content of “invisible” Au in the synthesized löllingite (800 ± 300 ppm) was much higher than that in arsenopyrite (23 ± 14 ppm). The lowest Au content was observed in zonal pyrite crystals synthesized in a salt flux. High “invisible” Au contents were observed in hydrothermal pyrite (40–90 ppm), which implies that this mineral can efficiently scavenge Au even in As-free systems. The Au content of the hydrothermal pyrite is independent of sulfur fugacity and probably corresponds to the maximum Au solubility at the experimental P-T parameters (450 °C, 1 kbar). It is shown that Au replaces Fe in the structures of löllingite, arsenopyrite, and hydrothermal pyrite. The Au-ligand distance increases by 0.14 Å (pyrite), 0.16 Å (löllingite), and 0.23 Å (As), 0.13 Å (S) (arsenopyrite) relative to the Fe-ligand distance in pure compounds. Distortions of the atomic structures are localized around Au atoms and disappear at R > ∼4 Å. Chemically bound Au occurs only in hydrothermal pyrite, whereas pyrite synthesized without hydrothermal fluid contains only Au°. The heating (metamorphism) of hydrothermal pyrite results in the decomposition of chemically bound Au and formation of Au° nuggets, which coarsen with increasing temperature. Depending on the chemical composition of the host mineral, Au can play a role of either a cation or an anion: the Bader atomic partial charge of Au decreases in the order pyrite (+0.4 e) > arsenopyrite (0) > löllingite (−0.4 e). Our results suggest that other noble metals (platinum group elements, Ag) can form a chemically bound refractory admixture in base metal sulfides/chalcogenides. The content of chemically bound noble metals can vary depending on the composition of the host mineral and ore history.

Keywords: Invisible gold; pyrite; arsenopyrite; löllingite; synthetic minerals; X-ray absorption spectroscopy; atomic charges

References cited

  • Bayliss, P. (1977) Crystal structure refinement of weakly anisotropic pyrite cubic model. American Mineralogist, 62, 1168–1172.Google Scholar

  • Bellet, D., Gorges, B., Dallery, A., Bernard, P., Pereiro, E., and Baruchel, J. (2003) A 1300 K furnace for in situ X-ray microtomography. Journal of Applied Crystallography, 36, 366–367.Google Scholar

  • Bindi, L., Moelo, Y., Leone, P., and Suchaud, M. (2012) Stoichiometric arsenopyrite, FeAsS, from La Roche-Balue Quarry, Loire-Atlantique, France: Crystal structure and Mössbauer study. Canadian Mineralogist, 50, 471–479.Google Scholar

  • Blöhl, P.E. (1994) Projector augmented-wave method. Physical Review B, 50, 17, 953–17,979.Google Scholar

  • Bortnikov, N.S., Cabri, L.J., Vikentiev, I.V., Tagirov, B.R., Mc Mahon, G., Bogdanov, Yu.A., and Stavrova, O.O. (2003) Invisible gold in sulfides from seafloor massive sulfide edifices. Geology of Ore Deposits, 45, 201–212.Google Scholar

  • Bunău, O., and Joly, Y. (2009) Self-consistent aspects of X-ray absorption calculations. Journal of Physics: Condensed Matter, 21, 345501.Google Scholar

  • Bzowski, A., Yiu, Y.M., and Sham, T.K. (1995) Charge redistribution in Au-metalloid intermetallics: A Au L2,3-edge X-ray absorption study. Physical Review B, 51, 9515–9520.Google Scholar

  • Cabri, L.J., Newville, M., Gordon, R.A., Daryl Crozier, E., Sutton, S.R., McMahon, G., and Jiang, D.T. (2000) Chemical speciation of gold in arsenopyrite. Canadian Mineralogist, 38, 1265–1281.Google Scholar

  • Cardile, C.M., Cashion, J.D., McGrath, A.C., Renders, P., and Seward, T.M. (1993) 197Au Mössbauer study of Au2S and gold adsorbed onto As2S3 and Sb2S3 substrates. Geochimica et Cosmochimica Acta, 57, 2481–2486.Google Scholar

  • Chou, I-M. (2012) Optical cells with fused silica windows for the study of geological fluids. In J. Dubessy, M.-C. Gaumont, and F. Rull, Eds., Applications of Raman Spectroscopy to Earth Sciences and Cultural Heritage, 12, p. 227–248. EMU Notes in Mineralogy, London.Google Scholar

  • Chou, I-M., Song, Y., and Burruss, R.C. (2008) A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic material. Geochimica et Cosmochimica Acta, 72, 5217–5231.Google Scholar

  • Cook, N.J., Ciobanu, C.L., and Mao, J. (2009) Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chemical Geology, 264, 101–121.Google Scholar

  • Deditius, A.P., Reich, M., Kesler, S.E., Utsunomiya, S., Chryssoulis, C.L., Walshe, J., and Ewing, R.C. (2014) The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 140, 644–670.Google Scholar

  • Ding, J. (2010) The pH determination of palaeofluids: experimental and thermodynamic approach, 173 p. Ph.D. thesis, Université Henri Poincaré, Nancy.Google Scholar

  • Fadeev, V.V., and Kozerenko, S.V. (1999) Gold in processes of pyrite formation. Part 1. Gold accumulation during pyrite formation. Geochemistry International, 37, 1182–1190.Google Scholar

  • Filimonova, O.N., Minervina, E.A., Kovalchuk, E.A., Abramova, V.D., Vikent’iev, I.V., Tagirov, B.R., Chareev, D.A., and Chvosticov, V.A. (2015) An experimental study of noble and base metals (Au, Ag, Pt, Pd, Zn) distribution in pyrite and pyrrhotite. In A.-S. André-Meyer et al., Eds., Proceedings of the 13th Biennial SGA Meeting, Mineral Resources in a Sustainable World, p. 925–927. Nancy, France.Google Scholar

  • Franchini, M., McFarlane, C., Maydagán, L., Reich, M., Lentz, D.R., Meinert, L., and Bouhier, V. (2015) Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geology Reviews, 66, 366–387.Google Scholar

  • Gauthier, C., Sole, V.A., Signorato, R., Goulon, J., and Moguiline, E. (1999) The ESRF beamline ID26: X-ray absorption on ultra dilute sample. Journal of Synchrotron Radiation, 6, 164–166.Google Scholar

  • Genkin, A.D., Bortnikov, N.S., Cabri, L.J., Wagner, F.E., Stanley, C.J., Safonov, O.G., McMahon, G., Friedl, J., Kerzin, A.L., and Gamyanin, G.N. (1998) A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian federation. Economic Geology, 93, 463–487.Google Scholar

  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I. and others. (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502.Google Scholar

  • Glatzel, P., and Bergman, U. (2005) High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information. Coordination Chemistry Reviews, 249, 65–95.Google Scholar

  • Goldfarb, R.J., Baker, T., Dube, B., Groves, D.I., Hart, C.J., and Gosselin, P. (2005) Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology 100th Anniversary Volume, 407–450.Google Scholar

  • Guda, S.A., Guda, A.A., Soldatov, M.A., Lomachenko, K.A., Bugaev, A.L., Lamberti, C., Gawelda, W., Bressler, C., Smolentsev, G., Soldatov, A.V., and Joly, Y. (2015) Optimized finite difference method for the full-potential XANES simulations: application to molecular adsorption geometries in MOFs and metal-ligand intersystem crossing transients. Journal of Chemical Theory and Computation, 11, 4512–4521.Google Scholar

  • Grichuk, D.V. (2012) Thermodynamic model of ore-forming processes in a submarine island-arc hydrothermal system. Geochemistry International, 50, 1069–1100.Google Scholar

  • Hedin, L., and Lundqvist, B. (1971) Explicit local exchange-correlation potentials. Journal of Physics C: Solid State Physics, 4, 2064–2083.Google Scholar

  • Huheey, J.E., Keiter, E.A., and Keiter, R.L. (2000) Inorganic Chemistry: Principles of structure and reactivity, 4th ed. Pearson Education.Google Scholar

  • Ivanova, Ju.N., Tykova, E.E., Abramova, V.D., Kovalchuk, E.V., and Vikentyev, I.V. (2015) Ores mineralogy and first data about “invisible” form of Au in pyrite of the Novogodnee-Monto deposit (the Polar Urals, Russia). In A.-S. André-Meyer et al., Eds., Proceedings of the 13th Biennial SGA Meeting, Mineral Resources in a Sustainable World, p. 121–125. Nancy, France.Google Scholar

  • Joly, Y. (2001) X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Physical Review B, 63, 125120.Google Scholar

  • Kozerenko, S.V., Wagner, F.E., Friedl, J., and Fadeev, V.V. (2001) Gold in pyrite formation processes: 3. Mössbauer study of synthetic gold-bearing iron sulfides. Geochemistry International, 39, Suppl, 2, S167–S172.Google Scholar

  • Kresse, G. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758–1775.Google Scholar

  • Kuhn, M., and Sham, T.K. (1994) Charge redistribution and electronic behavior in a series of Au-Cu alloys. Physical Review B, 49, 1647–1661.Google Scholar

  • Kvashnina, K.O., and Scheinost, A.C. (2016) A Johann-type X-ray emission spectrometer at the Rossendirf Beamline. Journal of Synchrotron Radiation, 23, 836–841.Google Scholar

  • Laptev, Yu.V., and Rozov, K.B. (2006) Interaction of gold with sulfide surface as a factor of its concentration in hydrothermal ore formation. Doklady Earth Sciences, 411, 1229–1232.Google Scholar

  • Large, R.R., Maslennikov, V.V., Robert, F., Danyushevsky, L.V., and Chang, Z. (2007) Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena Gold Province, Russia. Economic Geology, 102, 1233–1267.Google Scholar

  • Lutz, H.D., Jung, M., and Wäschenbach, G. (1987) Kristallstrukturen des löllingits FeAs2 und des pyrits RuTe2. Zeitschrift für Anorganische und Allgemeine Chemie, 554, 87–91.Google Scholar

  • Mercier-Langevin, P., Hannington, M.D., Dubé, B., and Bécu, V. (2011) The gold content of volcanogenic massive sulfide deposits. Mineralium Deposita, 46, 509–539.Google Scholar

  • Otero-de-la-Roza, A., Blanco, M.A., Martín Pendás, A., and Luaña, V. (2009) Critic: a new program for the topological analysis of solid-state electron densities. Computer Physics Communications, 180, 157–166.Google Scholar

  • Otero-de-la-Roza, A., Johnson, E.R., and Luaña, V. (2014) Critic2: A program for real-space analysis of quantum chemical interactions in solids. Computer Physics Communications, 185, 1007–1018.Google Scholar

  • Palenik, C.S., Utsunomiya, S., Reich, M., Kesler, S.E., Wang, L., and Ewing, R.C. (2004) “Invisible” gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit. American Mineralogist, 89, 1359–1366.Google Scholar

  • Ravel, B., and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537–541.Google Scholar

  • Rehr, J.J., Kas, J.J., Vila, F.D., Prange, M.P., and Jorissen, K. (2010) Parameter-free calculations of X-ray spectra with FEFF9. Physical Chemistry Chemical Physics, 12, 5503–5513.Google Scholar

  • Reich, M., and Becker, U. (2006) First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite. Chemical Geology, 225, 278–290.Google Scholar

  • Reich, M., Kesler, S., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L., and Ewing, R.C. (2005) Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69, 2781–2796.Google Scholar

  • Reich, M., Utsunomiya, S., Kesler, S., Wang, L., Ewing, R.C., and Becker, U. (2006) Thermal behavior of metal nanoparticles in geologic materials. Geology, 34, 1033–1036.Google Scholar

  • Renders, P.J., and Seward, T.M. (1989) The adsorption of thio gold(I) complexes by amorphous As2S3 and Sb2S3 at 25 and 90 °C. Geochimica et Cosmochimica Acta, 53, 255–267.Google Scholar

  • Savage, K.S., Tingle, T.N., O’Day, P.A., Waychunas, G.A., and Bird, D.K. (2000) Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Applied Geochemistry, 15, 1219–1244.Google Scholar

  • Simon, G., Huang, H., Penner-Hahn, J.E., Kesler, S., and Kao, L.S. (1999) Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. American Mineralogist, 84, 1071–1079.Google Scholar

  • Stefánsson, A., and Seward, T.M. (2004) Gold(I) complexing in aqueous sulphide solutions to 500°C at 500 bar. Geochimica et Cosmochimica Acta, 68, 4121–4143.Google Scholar

  • Tagirov, B.R., Dikov, Y.P., Buleev, M.I., Koval’chuk, E.V., Chareev, D.A., Kokh, M.A., Borisovskii, S.E., Abramova, V.D., Baranova, N.N., Garas’ko, M.I., and others. (2014) “Invisible” gold in covellite (CuS): synthesis and studies by EPMA, LA–ICP–MS, and XPS techniques. Doklady Earth Sciences, 459, Part, 1, 1381–1386.Google Scholar

  • Tagirov, B.R., Trigub, A.L., Kvashnina, K.O., Shiryaev, A.A., Chareev, D.A., Nickolsky, M.S., Abramova, V.D., and Kovalchuk, E.V. (2016) Covellite CuS as a matrix for “invisible” gold: X-ray spectroscopic study of the chemical state of Cu and Au in synthetic minerals. Geochimica et Cosmochimica Acta, 191, 58–69.Google Scholar

  • Vikentyev, I.V. (2015a) Invisible and microscopic gold in pyrite: methods and new data for massive sulfide ores of the Urals. Geology of Ore Deposits, 57, 237–265.Google Scholar

  • Vikentyev, I.V. (2015b) Invisible and microscopic gold in pyrite: new data for volcanogenic massive sulfide ores of the Urals. In A.-S. André-Meyer et al., Eds., Proceedings of the 13th Biennial SGA Meeting, Mineral Resources in a Sustainable World, p. 2113–2116. Nancy, France.Google Scholar

  • Vikent’eva, O.V., and Bortnikov, N.S. (2015) The large Svetlinsk Au-Te deposit, South Urals: telluride mineralization for genetic reconstructions. In A.-S. André-Meyer et al., Eds., Proceedings of the 13th Biennial SGA Meeting, Mineral Resources in a Sustainable World, 851–854. Nancy, France.Google Scholar

  • Wagner, T., Klemd, R., Wenzel, T., and Mattson, B. (2007) Gold upgrading in metamorphosed massive sulfide ore deposits: Direct evidence from laser-ablation-inductively-coupled plasma mass spectrometry of invisible gold. Geology, 35, 775–778.Google Scholar

  • Watson, R.E., Hudis, J., and Perlman, M.L. (1971) Charge flow and d compensation in gold alloys. Physical Review B, 4, 4139–4144.Google Scholar

  • Widler, A.M., and Seward, T.M. (2002) The adsorption of gold (I) hydrosulphide complexes by iron sulphide surfaces. Geochimica et Cosmochimica Acta, 66, 383–402.Google Scholar

  • Zabinsky, S.I., Rehr, J.J., Ankudinov, A., Albers, R.C., and Eller, M.J. (1995) Multiple-scattering calculations of X-ray-absorption spectra. Physical Review B, 52, 2995–3009.Google Scholar

  • Zotov, A.V., Laputina, I.P., and Chichagov, A.V. (1972) Arsenian pyrite from hot springs of Kunashir Island (Kuril Islands). Geology of Ore Deposits, No. 1, 125–131 (in Russian).Google Scholar

About the article

Received: 2016-04-27

Accepted: 2016-12-23

Published Online: 2017-05-06

Published in Print: 2017-05-24


Citation Information: American Mineralogist, Volume 102, Issue 5, Pages 1057–1065, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5832.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in