Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 5


Deep mantle origin and ultra-reducing conditions in podiform chromitite: Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey

Dongyang Lian
  • Faculty of Earth Sciences, China University of Geosciences (Wuhan), Wuhan, 430074, China
  • CARMA, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jingsui Yang
  • Corresponding author
  • Faculty of Earth Sciences, China University of Geosciences (Wuhan), Wuhan, 430074, China
  • CARMA, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yildirim Dilek
  • CARMA, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Weiwei Wu
  • Faculty of Earth Sciences, China University of Geosciences (Wuhan), Wuhan, 430074, China
  • CARMA, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhongming Zhang / Fahui Xiong / Fei Liu / Wengda Zhou
  • Faculty of Earth Sciences, China University of Geosciences (Wuhan), Wuhan, 430074, China
  • CARMA, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-06 | DOI: https://doi.org/10.2138/am-2017-5850


The Pozanti-Karsanti ophiolite situated in the eastern Tauride belt, southern Turkey, is a well-preserved oceanic lithosphere remnant comprising, in ascending order, mantle peridotite, ultramafic and mafic cumulates, isotropic gabbros, sheeted dikes, and basaltic pillow lavas. Two types of chromitites are observed in the Pozanti-Karsanti ophiolite. One type of chromitites occurs in the cumulate dunites around the Moho, and the other type of chromitites is hosted by the mantle harzburgites below the Moho. The second type of chromitites has massive, nodular, and disseminated textures. We have conducted the mineral separation work on the podiform chromitites hosted by harzburgites. So far, more than 100 grains of microdiamond and moissanite (SiC) have been recovered from the podiform chromitite. The diamonds and moissanite are accompanied by large amounts of rutile. Besides zircon, monazite and sulfide are also very common phases within the separated minerals. The discovery of diamond, moissanite, and the other unusual minerals from podiform chromitite of the Pozanti-Karsanti ophiolite provides new evidences for the common occurrences of these unusual minerals in ophiolitic peridotites and chromitites. This discovery also suggests that deep mantle processes and materials have been involved in the formation of podiform chromitite.

Keywords: Ophiolite; chromitite; diamond; moissanite

References cited

  • Akbulut, M., González-Jiménez, J.M., Griffin, W.L., Belousova, E., O’Reilly, S.Y., McGowan, N., and Pearson, N.J. (2016) Tracing ancient events in the lithospheric mantle: A case study from ophiolitic chromitites of SW Turkey. Journal of Asian Earth Sciences, 119, 1–19.Google Scholar

  • Akmaz, R.M., Uysal, I., and Saka, S. (2014) Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for chromitite genesis. Ore Geology Reviews, 58, 208–224.Google Scholar

  • Alexander, C.O. (1993) Presolar SiC in chondrites: How variable and how many sources? Geochimica et Cosmochimica Acta, 57(12), 2869–2888.Google Scholar

  • Arai, S. (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology, 113(3), 191–204.Google Scholar

  • Arai, S. (1997) Origin of podiform chromitites. Journal of Asian Earth Sciences, 15(2), 303–310.Google Scholar

  • Arai, S., and Matsukage, K. (1998) Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: a comparison between abyssal and alpine-type podiform chromitites. Lithos, 43(1), 1–14.Google Scholar

  • Arai, S., Uesugi, J., and Ahmed, A.H. (2004) Upper crustal podiform chromitite from the northern Oman ophiolite as the stratigraphically shallowest chromitite in ophiolite and its implication for Cr concentration. Contributions to Mineralogy and Petrology, 147(2), 145–154.Google Scholar

  • Bonatti, E., Peyve, A., Kepezhinskas, P., Kurentsova, N., Seyler, M., Skolotnev, S. and Udintsev, G. (1992) Upper mantle heterogeneity below the Mid-Atlantic Ridge, 0–15 N. Journal of Geophysical Research: Solid Earth, 97(B4), 4461–4476.Google Scholar

  • Bostock, M.G., Hyndman, R.D., Rondenay, S., and Peacock, S.M. (2002) An inverted continental Moho and serpentinization of the forearc mantle. Nature, 417, 536–538.Google Scholar

  • Brunelli, D., Seyler, M., Cipriani, A., Ottolini, L., and Bonatti, E. (2006) Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema lithospheric section (Mid-Atlantic Ridge). Journal of Petrology, 47(4), 745–771.Google Scholar

  • Caran, Ş., Çoban, H., Flower, M.F., Ottley, C.J., and Yilmaz, K. (2010) Podiform chromitites and mantle peridotites of the Antalya ophiolite, Isparta Angle (SW Turkey): implications for partial melting and melt–rock interaction in oceanic and subduction-related settings. Lithos, 114(3), 307–326.Google Scholar

  • Cartigny, P. (2005) Stable isotopes and the origin of diamond. Elements, 1(2), 79–84.Google Scholar

  • Çelik, Ö.F., Michel, D., and Gilbert, F. (2006) Precise 40Ar–39Ar ages from the metamorphic sole rocks of the Tauride Belt Ophiolites, southern Turkey: implications for the rapid cooling history. Geological Magazine, 143, 213–227.Google Scholar

  • Dickey, J.S. (1975) A hypothesis of origin for podiform chromite deposits. Geochimica et Cosmochimica Acta, 39(6), 1061–1074.Google Scholar

  • Dilek, Y., and Furnes, H. (2011) Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(3/4), 387–411.Google Scholar

  • Dilek, Y., Thy, P., Hacker, B. and Grundvig, S. (1999) Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): Implications for the Neotethyan ocean. Geological Society of America Bulletin, 111(8), 1192–1216.Google Scholar

  • Dobrzhinetskaya, L.F., Wirth, R., Yang, J., Hutcheon, I.D., Weber, P.K., and Green, H.W. (2009) High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences, 106(46), 19233–19238.Google Scholar

  • Frost, D.J. (2008) The upper mantle and transition zone. Elements, 4(3), 171–176.Google Scholar

  • Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth’s mantle. Annual Review of Earth and Planetary Sciences, 36, 389–420.Google Scholar

  • Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Y., Murashko, M., and Dzierzanowski, P. (2013) New minerals and nomenclature modifications approved in 2013. Mineralogical Magazine, 77(6), 2695–2709.Google Scholar

  • Ghosh, S., Ohtani, E., Litasov, K.D., Suzuki, A., Dobson, D., and Funakoshi, K. (2013) Effect of water in depleted mantle on post-spinel transition and implication for 660km seismic discontinuity. Earth and Planetary Science Letters, 371, 103–111.Google Scholar

  • Golubkova, A., Schmidt, M.W., and Connolly, J.A.D. (2016) Ultra-reducing conditions in average mantle peridotites and in podiform chromitites: a thermodynamic model for moissanite (SiC) formation. Contributions to Mineralogy & Petrology, 171(5), 1–17.Google Scholar

  • González-Jiménez, J.M., Proenza, J.A., Gervilla, F., Melgarejo, J.C., Blanco-Moreno, J.A., Ruiz-Sánchez, R., and Griffin, W.L. (2011) High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal Ophiolitic Massif (eastern Cuba): constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos, 125(1), 101–121.Google Scholar

  • González-Jiménez, J.M., Griffin, W.L., Proenza, J.A., Gervilla, F., O’Reilly, S.Y., Akbulut, M., Pearson, N.J., and Arai, S. (2014) Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites. Lithos, 189(2014), 140–158.Google Scholar

  • Griffin, W.L., Afonso, J.C., Belousova, E.A., Gain, S.E., Gong, X., González-Jiménez, J.M., Howell, D., Huang, J., McGowan, N., and Pearson, N.J. (2016) Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. Journal of Petrology, 2016, 1–30.Google Scholar

  • Hellebrand, E., Snow, J.E., Hoppe, P., and Hogmann, A.W. (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. Journal of Petrology, 43(12), 2305–2338.Google Scholar

  • Howell, D., Griffin, W.L., Yang, J., Gain, S., Stern, R.A., Huang, J., Jacob, D.E., Xu, X., Stokes, A.J., and O’Reilly, S.Y. (2015) Diamonds in ophiolites: Contamination or a new diamond growth environment? Earth and Planetary Science Letters, 430, 284–295.Google Scholar

  • Irvine, T.N. (1977) Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: a new interpretation. Geology, 5(5), 273–277.Google Scholar

  • Ishii, T. (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, LEG125. Proceedings of Ocean Drilling Program, Scientific Results, 125, 445–485.Google Scholar

  • Jacob, D.E., Kronz, A., and Viljoen, K.S. (2004) Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contributions to Mineralogy and Petrology, 146(5), 566–576.Google Scholar

  • Johnson, K., and Dick, H.J. (1992) Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. Journal of Geophysical Research: Solid Earth, 97(B6), 9219–9241.Google Scholar

  • Kaminsky, F. V., Khachatryan, G.K., Andreazza, P., Araujo, D., and Griffin, W.L. (2009) Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos, 112, 833–842.Google Scholar

  • Komor, S.C., Grove, T.L., and Hébert, R. (1990) Abyssal peridotites from ODP Hole 670A (21 10″N, 45 02″W): residues of mantle melting exposed by non-constructive axial divergence. Proceedings of Ocean Drilling Program, Scientific Results, 109, 85–101.Google Scholar

  • Leung, I., Guo, W., Friedman, I., and Gleason, J. (1990) Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian. Nature, 346, 352–354.Google Scholar

  • Liang, F., Xu, Z., and Zhao, J. (2014) In-situ moissanite in dunite: deep mantle origin of mantle peridotite in Luobusa Ophiolite, Tibet. Acta Geologica Sinica (English edition), 88(2), 517–529.Google Scholar

  • Lytwyn, J.N. and Casey, J.F. (1995) The geochemistry of postkinematic mafic dike swarms and subophiolitic metabasites, Pozanti-Karsanti ophiolite, Turkey: Evidence for ridge subduction. Geological Society of America Bulletin, 107(7), 830–850.Google Scholar

  • Mathez, E.A., Fogel, R.A., Hutcheon, I.D., and Marshintsev, V.K. (1995) Carbon isotopic composition and origin of SiC from kimberlites of Yakutia, Russia. Geochimica et Cosmochimica Acta, 59(4), 781–791.Google Scholar

  • McGowan, N.M., Griffin, W.L., González-Jiménez, J.M., Belousova, E., Afonso, J.C., Shi, R., McCammon, C.A., Pearson, N.J. and O’Reilly, S.Y. (2015) Tibetan chromitites: Excavating the slab graveyard. Geology, 43(2), 179–182.Google Scholar

  • Moix, P., Beccaletto, L., Kozur, H.W., Hochard, C., Rosselet, F., and Stampfli, G.M. (2008) A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics, 451(1), 7–39.Google Scholar

  • Niida, K. (1997) 12, Mineralogy of Mark peridotites: replacement through magma chaneling examined from Hole 920D, Mark area. Proceedings of Ocean Drilling Program, Scientific Results, 153, 265–275.Google Scholar

  • Okamura, H., Arai, S., and Kim, Y. (2006) Petrology of forearc peridotite from the Hahajima Seamount, the Izu-Bonin arc, with special reference to chemical characteristics of chromian spinel. Mineralogical Magazine, 70(1), 15–26.Google Scholar

  • Pagé, P., and Barnes, S. (2009) Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada. Economic Geology, 104(7), 997–1018.Google Scholar

  • Parkinson, I.J., and Pearce, J.A. (1998) Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9), 1577–1618.Google Scholar

  • Parlak, O., Höck, V., and Delaloye, M. (2000) Suprasubduction zone origin of the Pozanti-Karsanti ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. Geological Society, London, Special Publications, 173(1), 219–234.Google Scholar

  • Parlak, O., Höck, V., and Delaloye, M. (2002) The supra-subduction zone Pozanti–Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos, 65, 205–224.Google Scholar

  • Pearce, J.A. (2014) Immobile element fingerprinting of ophiolites. Elements, 10(2), 101–108.Google Scholar

  • Polat, A., and Casey, J.F. (1995) A structural record of the emplacement of the Pozanti-Karsanti ophiolite onto the Menderes-Taurus block in the late Cretaceous, eastern Taurides, Turkey. Journal of Structural Geology, 17(12), 1673–1688.Google Scholar

  • Polat, A., Casey, J.F., and Kerrich, R. (1996) Geochemical characteristics of accreted material beneath the Pozanti-Karsanti ophiolite, Turkey: Intra-oceanic detachment, assembly and obduction. Tectonophysics, 263(1), 249–276.Google Scholar

  • Putirka, K. (2016) Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature. American Mineralogist, 101, 819–840.Google Scholar

  • Ringwood, A.E. (1975) Composition and Petrology of the Earth’s Mantle, 618 p. McGraw-Hill, New York.Google Scholar

  • Robinson, P.T., Bai, W., Malpas, J., Yang, J., Zhou, M., Fang, Q., Hu, X., Cameron, S., and Staudigel, H. (2004) Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. Special Publication-Geological Society of London, 226, 247–272.Google Scholar

  • Robinson, P.T., Trumbull, R.B., Schmitt, A., Yang, J., Li, J., Zhou, M., Erzinger, J., Dare, S., and Xiong, F. (2015) The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Research, 27(2), 486–506.Google Scholar

  • Rollinson, H., and Adetunji, J. (2015) The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: a review. Gondwana Research, 27(2), 543–554.Google Scholar

  • Saka, S., Uysal, I., Akmaz, R.M., Kaliwoda, M., and Hochleitner, R. (2014) The effects of partial melting, melt–mantle interaction and fractionation on ophiolite generation: Constraints from the late Cretaceous Pozanti-Karsanti ophiolite, southern Turkey. Lithos, 300–316.Google Scholar

  • Schmidt, M.W., Gao, C., Golubkova, A., Rohrbach, A., and Connolly, J.A. (2014) Natural moissanite (SiC)–a low temperature mineral formed from highly fractionated ultra-reducing COH-fluids. Progress in Earth and Planetary Science, 1(1), 1–14.Google Scholar

  • Seyler, M., Cannat, M., and Mével, C. (2003) Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52 to 68 E). Geochemistry, Geophysics, Geosystems, 4(2), 1–33.Google Scholar

  • Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Pearson, D.G., Sobolev, N.V., and Walter, M.J. (2013) Diamonds and the geology of mantle carbon. Reviews in Mineralogy & Geochemistry, 75, 355–421.Google Scholar

  • Shiryaev, A.A., Griffin, W.L., and Stoyanov, E. (2011) Moissanite (SiC) from kimberlites: polytypes, trace elements, inclusions and speculations on origin. Lithos, 122(3), 152–164.Google Scholar

  • Snow, J.E., and Dick, H.J. (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 59(20), 4219–4235.Google Scholar

  • Stachel, T., and Luth, R.W. (2015) Diamond formation—Where, when and how? Lithos, 220, 200–220.Google Scholar

  • Stachel, T., Brey, G.P., and Harris, J.W. (2005) Inclusions in sublithospheric diamonds: glimpses of deep Earth. Elements, 1(2), 73–78.Google Scholar

  • Stagno, V., and Frost, D.J. (2010) Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth and Planetary Science Letters, 300, 72–84.Google Scholar

  • Stagno, V., Ojwang, D.O., McCammon, C.A., and Frost, D.J. (2013) The oxidation state of the mantle and the extraction of carbon from Earth/’s interior. Nature, 493, 84–88.Google Scholar

  • Stagno, V., Frost, D.J., McCammon, C.A., Mohseni, H., and Fei, Y. (2015) The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contributions to Mineralogy and Petrology, 169(2), 1–18.Google Scholar

  • Stephens, C.J. (1997) Heterogeneity of oceanic peridotite from the western canyon wall at MARK: results from site 920. Proceedings of the Ocean Drilling Program, Scientific results, 153, 285–303.Google Scholar

  • Stern, R.J. (2004) Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters, 226(3), 275–292.Google Scholar

  • Stern, R.J., Reagan, M., Ishizuka, O., Ohara, Y., and Whattam, S. (2012) To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites. Lithosphere, 4(6), 469–483.Google Scholar

  • Stevens, R.E. (1944) Composition of some chromites of the western hemisphere. American Mineralogist, 29, 1–34.Google Scholar

  • Tekeli, O., Aksay, A., Urgun, B.M., and Isik, A. (1983) Geology of the Aladag mountains. The Geology of the Taurus Belt. MTA Publications, Ankara, 143–158.Google Scholar

  • Thayer, T.P. (1964) Principal features and origin of podiform chromite deposits, and some observations on the Guelman-Soridag District, Turkey. Economic Geology, 59(8), 1497–1524.Google Scholar

  • Thayer, T.P. (1970) Chromite segregations as petrogenetic indicators. Special Publication—Geological Society of South Africa, 1, 380–390.Google Scholar

  • Thuizat, R., Whitechurch, H., Montigny, R., and Juteau, T. (1981) K-Ar dating of some infra-ophiolitic metamorphic soles from the Eastern Mediterranean: new evidence for oceanic thrustings before obduction. Earth and Planetary Science Letters, 52(2), 302–310.Google Scholar

  • Tian, Y., Yang, J., Robinson, P.T., Xiong, F., Yuan, L.I., Zhang, Z., Liu, Z., Liu, F., and Niu, X. (2015) Diamond discovered in high-Al chromitites of the Sartohay Ophiolite, Xinjiang Province, China. Acta Geologica Sinica, 89(2), 332–340.Google Scholar

  • Trumbull, R.B., Yang, J., Robinson, P.T., Di Pierro, S., Vennemann, T., and Wiedenbeck, M. (2009) The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle: New discoveries from ophiolites. Geochmica et Cosmochimica Acta, 113(3), 612–620.Google Scholar

  • Ucurum, A., Koptagel, O., and Lechler, P.J. (2006) Main-component geochemistry and Platinum-Group-Element potential of Turkish chromite deposits, with emphasis on the Mugla area. International Geology Review, 48(3), 241–254.Google Scholar

  • Ueda, K., Gerya, T., and Sobolev, S.V. (2008) Subduction initiation by thermal chemical plumes: Numerical studies. Physics of the Earth & Planetary Interiors, 171(1), 296–312.Google Scholar

  • Ulmer, G.C., Grandstaff, D.E., Woermann, E., Göbbels, M., Schönitz, M., and Woodland, A.B. (1998) The redox stability of moissanite (SiC) compared with metal-metal oxide buffers at 1773 K and at pressures up to 90 kbar. Neues Jahrbuch für Mineralogie-Abhandlungen, 172(2), 279–307.Google Scholar

  • Uysal, I., Zaccarini, F., Garuti, G., Meisel, T., Tarkian, M., Bernhardt, H.J., and Sadiklar, M.B. (2007) Ophiolitic chromitites from the Kahramanmaras area, southeastern Turkey: their platinum group elements (PGE) geochemistry, mineralogy and Os-isotope signature. Ofioliti, 32, 151–161.Google Scholar

  • Uysal, I., Tarkian, M., Sadiklar, M.B., Zaccarini, F., Meisel, T., Garuti, G., and Heidrich, S. (2009) Petrology of Al-and Cr-rich ophiolitic chromitites from the Mugla, SW Turkey: implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry. Contributions to Mineralogy and Petrology, 158(5), 659–674.Google Scholar

  • Whattam, S.A., and Stern, R.J. (2011) The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contributions to Mineralogy and Petrology, 162(5), 1031–1045.Google Scholar

  • Xiong, F., Yang, J., Robinson, P.T., Xu, X., Liu, Z., Li, Y., Li, J., and Chen, S. (2015) Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27(2), 525–542.Google Scholar

  • Xu, S., Wu, W., Xiao, W., Yang, J., Chen, J., Ji, S., and Liu, Y. (2008) Moissanite in serpentinite from the Dabie Mountains in China. Mineralogical Magazine, 72(4), 899–908.Google Scholar

  • Xu, X., Yang, J., Chen, S., Fang, Q., Bai, W., and Ba, D. (2009) Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet. Journal of Earth Science, 20, 284–302.Google Scholar

  • Xu, X., Yang, J., Robinson, P.T., Xiong, F., Ba, D., and Guo, G. (2015) Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Research, 27(2), 686–700.Google Scholar

  • Yamamoto, S., Komiya, T., Hirose, K., and Maruyama, S. (2009) Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos, 109(3), 314–322.Google Scholar

  • Yamamoto, S., Komiya, T., Yamamoto, H., Kaneko, Y., Terabayashi, M., Katayama, I., Iizuka, T., Maruyama, S., Yang, J., and Kon, Y. (2013) Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet. Island Arc, 22(1), 89–103.Google Scholar

  • Yang, J., Dobrzhinetskaya, L., Bai, W., Fang, Q., Robinson, P.T., Zhang, J., and Green, H.W. (2007) Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35(10), 875–878.Google Scholar

  • Yang, J., Robinson, P.T., and Dilek, Y. (2014) Diamonds in ophiolites. Elements, 10(2), 127–130.Google Scholar

  • Yang, J., Meng, F., Xu, X., Robinson, P.T., Dilek, Y., Makeyev, A.B., Wirth, R., Wiedenbeck, M., and Cliff, J. (2015) Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Research, 27(2), 459–485.Google Scholar

  • Zhang, P., Uysal, I., Zhou, M., Su, B., and Avci, E. (2016) Subduction initiation for the formation of high-Cr chromitites in the Kop ophiolite, NE Turkey. Lithos, 260, 345–355.Google Scholar

  • Zheng, J., Griffin, W.L., O’Reilly, S.Y., Zhang, M., and Pearson, N. (2006) Zircons in mantle xenoliths record the Triassic Yangtze–North China continental collision. Earth and Planetary Science Letters, 247(1), 130–142.Google Scholar

  • Zhou, M., Robinson, P.T., Malpas, J., and Li, Z. (1996) Podiform chromitites in the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1), 3–21.Google Scholar

  • Zhou, M.F., Sun, M., Keays, R.R., and Kerrich, R.W. (1998) Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62(4), 677–688.Google Scholar

  • Zhou, M., Robinson, P.T., Malpas, J., Aitchison, J., Sun, M., Bai, W., Hu, X., and Yang, J. (2001) Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China). Journal of Asian Earth Sciences, 19(4), 517–534.Google Scholar

  • Zhou, M., Robinson, P.T., Su, B., Gao, J., Li, J., Yang, J., and Malpas, J. (2014) Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1), 262–283.Google Scholar

  • Zhu, H., Jingsui, Y., Robinson, P.T., Yongwang, Z., Fahui, X., Zhao, L., Zhongming, Z., and Wei, X. (2015) The Discovery of diamonds in chromitites of the Hegenshan Ophiolite, Inner Mongolia, China. Acta Geologica Sinica (English edition), 89(2), 341–350.Google Scholar

About the article

Received: 2016-05-10

Accepted: 2016-12-23

Published Online: 2017-05-06

Published in Print: 2017-05-24

Citation Information: American Mineralogist, Volume 102, Issue 5, Pages 1101–1113, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5850.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in