Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 5


Dry annealing of metamict zircon: A differential scanning calorimetry study

Robert T. Pidgeon / Peter G. Chapman / Martin Danišík / Alexander A. Nemchin
Published Online: 2017-05-06 | DOI: https://doi.org/10.2138/am-2017-5901


We report the results of a differential scanning calorimeter (DSC) study of the annealing of a metamict Sri Lankan zircon. Raman measurements on most chips of the powdered zircon starting material, Sri Lankan zircon (WZ19), showed no evidence of a crystalline structure, whereas a few chips retained residual Raman bands typical of highly radiation damaged zircon. DSC runs on aliquots of the powdered sample were heated to 850 and 1000 °C at rates of 2 and 10 °C/min and to 1500 °C at a rate of 10 °C/min. Raman spectroscopy was used to investigate the crystallinity of grains at selected temperature stages. Exothermal peaks were observed at about 910 and 1260 °C during the DSC run to 1500 °C. The 910 °C peak was demonstrated by Raman spectroscopy to mark the crystallization of tetragonal zirconia and the exothermic peak at about 1260 °C was demonstrated to represent the reaction of zirconia and amorphous silica to form crystalline zircon. The degree of crystallinity of these grains was almost identical to that of highly crystalline zircons from recent gem gravels from New South Wales. A small number of experimental chips from DSC analyses under 1000 °C were found to have zircon Raman bands that indicated they had undergone partial annealing. The present experimental results suggest that reconstitution of amorphous zircon to the crystalline state by dry annealing will rarely occur in terrestrial geological settings, even under extreme metamorphic conditions.

Keywords: Radiation damage; metamict zircon; radiation damage annealing; differential scanning calorimeter; zircon Raman spectra

References cited

  • Bursill, L.A., and McLaren, A.C. (1966) Transmission electron microscope study of natural radiation damage in zircon (ZrSiO4). Physica Status Solidi, 13, 331–343.Google Scholar

  • Capitani, G.C., Leroux, H., Doukhan, J.C., Rios, S., Zhang, M., and Salje, E.K.H. (2000) A TEM investigation of natural metamict zircons: structure and recovery of amorphous domains. Physics and Chemistry of Minerals, 27, 545–556.Google Scholar

  • Colombo, M., and Chrosch, J. (1998) Annealing of natural metamict zircons: II high degree of radiation damage. Radiation Physics and Chemistry, 53, 563–566.Google Scholar

  • Ellison, A.J.G., and Navrotsky, A. (1992) Enthalpy of formation of zircon. Journal of the American Ceramic Society, 75, 1430–1433.Google Scholar

  • Ellsworth, S., Navrotsky, A., and Ewing, R.C. (1994) Energetics of radiation damage in natrual zircon (ZrSiO4). Physics and Chemistry of Minerals, 21, 140–149.Google Scholar

  • Ewing, R.C., Meldrum, A., Wang, L.M., Weber, W.J., and Corrales, L.R. (2003) Radiation effects in zircon. In J.M. Hancher and P.W.O. Hoskin, Eds., Zircon, 53, p. 387–425. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Garver, J.I. (2002) Discussion: “Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage” by Nasdala et al. (2001) (Contributions to Mineralogy and Petrology 141:125–144). Contributions to Mineralogy and Petrology, 143, 756–757.Google Scholar

  • Geisler, T., Pidgeon, R.T., van Bronswijk, W., and Pleysier, R. (2001) Kinetics of thermal recovery and re of partially metamict zircon: a Raman spectroscopic study. European. Journal of Mineralogy, 13, 1163–1176.Google Scholar

  • Geisler, T., Seydoux-Guillaume, A., Wiedenbeck, M., Wirth, R., Berndt, J., Zhang, M., Mihailova, B., Putnis, A., Salje, E.K.H., and Schlüter, J. (2004) Periodic precipitation pattern formation in hydrothermally treated metamict zircon. American Mineralogist, 89, 1341–1347.Google Scholar

  • Guenthner, W.R., Reiners, P.W., Ketcham, R.A., Nasdala, L., and Giester, G. (2013) Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. American Journal of Science, 313(3), 145–198.Google Scholar

  • Hasebe, N., Mori, S., Tagami, T., and Matsui, R. (2003) Geological partial annealing zone of zircon fission-track system: additional constraints from the deep drilling MITI-Nishikubiki and MITI-Mishima. Chemical Geology, 199, 45–52.Google Scholar

  • Holland, H., and Gottfried, D. (1955) The effect of nuclear radiation on the structure of zircon. Acta Crystallographica, 8, 291–300.Google Scholar

  • Kulp, J.L., Volchok, H.L., and Holland, H.D. (1952) Age from metamict minerals. American Mineralogist, 37, 709–718.Google Scholar

  • Lipova, I.M., Kusnetsova, G.A., and Markarov, Ye S. (1965) An investigation of the metamict state in zircons and cyrtolites. Geochemistry International 2, 513–525.Google Scholar

  • McLaren, A.C., Fitz Gerald, J.D., and Williams, I.S. (1994) The microstructure of zircon and its influence on the age determination from Pb/U isotope ratios measured by ion microprobe. Geochimica et Cosmochimica Acta, 58, 993–1005.Google Scholar

  • Mercer, C., Williams, J.R., Clarke, D.R., and Evans, A.G. (2007) On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime yttria-stabilised zirconia. Proceedings of the Royal Society A, 463, 1393–1408.Google Scholar

  • Murakami, T., Chakoumakos, B.C., Ewing, R.C., Lumpkin, G.R., and Weber, R.W. (1991) Alpha-decay event damage in zircon. American Mineralogist, 76, 1510–1532.Google Scholar

  • Nasdala, L., Irmer, G., and Wolf, D. (1995) The degree of metamictization in zircon: a Raman spectroscopic study. European Journal of Mineralogy, 7, 471–478.Google Scholar

  • Nasdala, L., Götze, J., Pidgeon, R.T., Kempe, U., and Seifert, T. (1998) Constraining a SHRIMP U–Pb age: micro-scale characterization of zircons from Saxonain Totliegen rhyolites. Contributions to Mineralogy and Petrology, 132, 300–306.Google Scholar

  • Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., and Kober, B. (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contributions to Mineralogy and Petrology, 141, 125–144.Google Scholar

  • Nasdala, L., Reiners, P.W., Garver, J.I., Kennedy, A.K., Stern, R., Balan, E., and Wirth, R. (2004) Incomplete retention of radiation damage in zircon from Sri Lanka, American Mineralogist, 89, 219–231.Google Scholar

  • Pabst, A. (1952) The metamict state. American Mineralogist, 37, 137–157.Google Scholar

  • Palenik, C.S., Nasdala, L., and Ewing, R.C. (2003) Radiation damage in zircon. American Mineralogist, 88, 770–781.Google Scholar

  • Phillippi, C.M., and Mazdiyasni, K.S. (1971) Infrared and Raman spectra of zirconia polymorphs. Journal of the American Ceramic Society, 54, 254–258.Google Scholar

  • Pidgeon, R.T. (2014) Zircon radiation damage ages. Journal of Chemical Geology, 367, 13–22.Google Scholar

  • Rios, S., Salje, E.K.H., Zhang, M., and Ewing, R.C. (2000) Amorphization in zircon: evidence for direct impact damage. Journal of Physics: Condensed Matter, 12, 2401–2412.Google Scholar

  • Váczi, T., Nasdala, L., Wirth, R., Mehofer, M., Libowitzky, E., and Häger, T. (2009) On the breakdown of zircon upon “dry” thermal annealing. Mineralogy and Petrology, 97, 129–138.Google Scholar

  • Vance, E.R. (1975) α-Recoil damage in zircon. Radiation Effects, 24(1), 1–6.Google Scholar

  • Vance, E.R., and Anderson, B.W. (1972) Study of metamict Ceylon zircons. Mineralogical Magazine, 38, 605–613.Google Scholar

  • Weber, W. J. (1990) Radiation-induced defects and amorphization in zircon. Journal of Materials Research, 5, 2687–2697.Google Scholar

  • Weber, W. J. (1991) Self-radiation damage and recovery in Pu-doped zircon. Radiation Effects and Defects in Solids, 115, 341–349.Google Scholar

  • Weber, W.J., Ewing, R.C., and Wang, L.M. (1994) The radiation-induced crystalline-to-amorphous transition in zircon. Journal of Materials Research, 9, 688–698.Google Scholar

  • Zhang, M., Salje, E.K.H., Farnan, I., Graeme-Barber, A., Daniel, P., Ewing, R.C., Clark, A.M., and Leroux, H. (2000) Metamictization of zircon: Raman Spectroscopic study. Journal of Physics–Condensed Matter, 12, 1915–1925.Google Scholar

About the article

Received: 2016-06-27

Accepted: 2016-12-23

Published Online: 2017-05-06

Published in Print: 2017-05-24

Citation Information: American Mineralogist, Volume 102, Issue 5, Pages 1066–1072, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5901.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in