Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 5


Using mineral equilibria to estimate H2O activities in peridotites from the Western Gneiss Region of Norway

Patricia Kang
  • Department of Geology & Geophysics, Texas A&M University, College Station, Texas 77843, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ William M. Lamb
  • Corresponding author
  • Department of Geology & Geophysics, Texas A&M University, College Station, Texas 77843, U.S.A.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martyn Drury
Published Online: 2017-05-06 | DOI: https://doi.org/10.2138/am-2017-5915


The Earth’s mantle is an important reservoir of H2O, and even a small amount of H2O has a significant influence on the physical properties of mantle rocks. Estimating the amount of H2O in rocks from the Earth’s mantle would, therefore, provide some insights into the physical properties of this volumetrically dominant portion of the Earth. The goal of this study is to use mineral equilibria to determine the activities of H2O (aH2O) in orogenic mantle peridotites from the Western Gneiss Region of Norway. An amphibole dehydration reaction yielded values of aH2O ranging from 0.1 to 0.4 for these samples. Values of fO2 of approximately 1 to 2 log units below the FMQ oxygen buffer were estimated from afO2-buffering reaction between olivine, orthopyroxene, and spinel for these same samples. These results demonstrate that the presence of amphibole in the mantle does not require elevated values of aH2O (i.e., aH2O ≈ 1) nor relatively oxidizing values offO2 (i.e., >FMQ).

It is possible to estimate a minimum value of aH2O by characterizing fluid speciation in C-O-H system for a given value of oxygen fugacity fO2). Our results show that the estimates of aH2O obtained from the amphibole dehydration equilibrium are significantly lower than values of aH2O estimated from this combination of fO2 and C-O-H calculations. This suggests that fluid pressure (Pfluid) is less than lithostatic pressure (Plith) and, for metamorphic rocks, implies the absence of a free fluid phase.

Fluid absent condition could be generated by amphibole growth during exhumation. If small amounts of H2O were added to these rocks, the formation of amphibole could yield low values of aH2O by consuming all available H2O. On the other hand, if the nominally anhydrous minerals (NAMs) contained significant H2O at conditions outside of the stability field of amphibole they might have served as a reservoir of H2O. In this case, NAMs could supply the OH necessary for amphibole growth once retrograde P-T conditions were consistent with amphibole stability. Thus, amphibole growth may effectively dehydrate coexisting NAMs and enhance the strength of rocks as long as the NAMs controlled the rheology of the rock.

Keywords: Amphibole equilibria; C-O-H fluid equilibria; H solubility; nominally anhydrous minerals; mantle fluid; peridotite

References cited

  • Agrinier, P., Mevel, C., Bosch, D., and Javoy, M. (1993) Metasomatic hydrous fluids in amphibole peridotites from Zabargad Island, Red Sea. Earth and Planetary Science Letters, 120, 187–205.Google Scholar

  • Asimow, P.D., and Ghiorso, M.S. (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist, 83, 1127–1132.Google Scholar

  • Bai, Q., and Kohlstedt, D.L. (1992) Sustantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature, 357, 672–674.Google Scholar

  • Bai, Q., and Kohlstedt, D.L. (1993) Effects of chemical environment on the solublity and incorporation mechanism for hydrogen in olivine. Physics and Chemistry of Minerals, 19, 460–471.Google Scholar

  • Bell, D.R., Rossman, G.R., Maldener, J., Endisch, D., and Rauch, F. (2003) Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum. Journal of Geophysical Research-Solid Earth, 108.Google Scholar

  • Bonadiman, C., Nazzareni, S., Coltorti, M., Comodi, P., Giuli, G., and Faccini, B. (2014) Crystal chemistry of amphiboles: implications for oxygen fugacity and water activity in lithospheric mantle beneath Victoria Land, Antarctica. Contributions to Mineralogy and Petrology, 167.Google Scholar

  • Brey, G.P., and Köhler, T. (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353–1378.Google Scholar

  • Brueckner, H.K., Carswell, D.A., and Griffin, W.L. (2002) Paleozoic diamonds within a precambrian peridotite lens in UHP gneisses of the Norwegian Caledonides. Earth and Planetary Science Letters, 203, 805–816.Google Scholar

  • Bryndzia, L.T., and Wood, B.J. (1990) Oxygen thermobarometry of abyssal spinel peridotites; the redox state and C-O-H volatile composition of the Earth’s sub-oceanic upper mantle. American Journal of Science, 290, 1093–1116.Google Scholar

  • Canil, D., and O’Neill, H.St.C. (1996) Distribution of ferric iron in some upper-mantle assemblages. Journal of Petrology, 37, 609–635.Google Scholar

  • Carswell, D.A. (1986) The metamorphic evolution of Mg-Cr type norwegian garnet peridotites. Lithos, 19, 279–297.Google Scholar

  • Carswell, D.A., and van Roermund, H.L.M. (2005) On multi-phase mineral inclusions associated with microdiamond formation in mantle-derived peridotite lens at Bardane on Fjortoft, west Norway. European Journal of Mineralogy, 17, 31–42.Google Scholar

  • Coltorti, M., Beccaluva, L., Bonadiman, C., Faccini, B., Ntaflos, T., and Siena, F. (2004) Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica. Lithos, 75, 115–139.Google Scholar

  • Connolly, J.A.D., and Cesare, B. (1993) C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites. Journal of Metamorphic Geology, 11, 379–388.Google Scholar

  • Connolly, J.A.D., and Podladchikov, Y.Y. (1998) Compaction-driven fluid flow in viscoelastic rock. Geodinamica Acta, 11, 55–84.Google Scholar

  • Connolly, J.A.D., and Podladchikov, Y.Y. (2015) An analytical solution for solitary porosity waves: dynamic permeability and fluidization of nonlinear viscous and viscoplastic rock. Geofluids, 15, 269–292.Google Scholar

  • Dale, J., Powell, R., White, R.W., Elmer, F.L., and Holland, T.J.B. (2005) A thermodynamic model for Ca-Na clinoamphiboles in Na2O-CaO-FeO-MgO-AhO3-SiO2-H2O-O for petrological calculations. Journal of Metamorphic Geology, 23, 771–791.Google Scholar

  • Demouchy, S., and Mackwell, S. (2006) Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Physics and Chemistry of Minerals, 33, 347–355.Google Scholar

  • Drury, M.R., van Roermund, H.L.M., Carswell, D.A., De Smet, J.H., Van den Berg, A. P., and Vlaar, N.J. (2001) Emplacement of deep upper-mantle rocks into cratonic lithosphere by convection and diapiric upwelling. Journal of Petrology, 42, 131–140.Google Scholar

  • Dyar, M.D., Mackwell, S.J., Mcguire, A.V., Cross, L.R., and Robertson, J.D. (1993) Crystal-chemistry of Fe3+ and H+ in mantle kaersutite—Implications for mantle metasomatism. American Mineralogist, 78, 968–979.Google Scholar

  • French, B.M. (1966) Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressures. Reviews of Geophysics, 4, 223–253.Google Scholar

  • Gaetani, G.A., O’Leary, J.A., Koga, K.T., Hauri, E.H., Rose-Koga, E.F., and Monteleone, B. D. (2014) Hydration of mantle olivine under variable water and oxygen fugacity conditions. Contributions to Mineralogy and Petrology, 167.Google Scholar

  • Gentili, S., Bonadiman, C., Biagioni, C., Comodi, P., Coltorti, M., Zucchini, A., and Ottolini, L. (2015) Oxo-amphiboles in mantle xenoliths: evidence for H2O-rich melt interacting with the lithospheric mantle of Harrow Peaks (Northern Victoria Land, Antarctica). Mineralogy and Petrology, 109, 741–759.Google Scholar

  • Ghiorso, M.S., and Evans, B.W. (2002) Thermodynamics of the amphiboles: Ca-Mg-Fe2+ quadrilateral. American Mineralogist, 87, 79–98.Google Scholar

  • Ghiorso, M.S., and Sack, R.O. (1995) Chemical mass-transfer in magmatic processes.4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197–212.Google Scholar

  • Green, D.H. (1973) Experimental melting studies on a model upper mantle composition at high-pressure under water-saturated and water-undersaturated conditions. Earth and Planetary Science Letters, 19, 37–53.Google Scholar

  • Green, D.H. (2015) Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle. Physics and Chemistry of Minerals, 42, 95–122.Google Scholar

  • Green, D.H., and Ringwood, A.E. (1970) Mineralogy of peridotitic compositions under upper mantle conditions. Physics of the Earth and Planetary Interiors, 3, 359–371.Google Scholar

  • Green, D.H., Hibberson, W.O., Rosenthal, A., Kovacs, I., Yaxley, G.M., Falloon, T.J., and Brink, F. (2014) Experimental study of the influence of water on melting and phase assemblages in the upper mantle. Journal of Petrology, 55, 2067–2096.Google Scholar

  • Grütter, H.S. (2009) Pyroxene xenocryst geotherms: Techniques and application. Lithos, 112, 1167–1178.Google Scholar

  • Grütter, H., Latti, D., and Menzies, A. (2006) Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. Journal of Petrology, 47, 801–820.Google Scholar

  • Hauri, E.H., Gaetani, G.A., and Green, T.H. (2006) Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth and Planetary Science Letters, 248, 715–734.Google Scholar

  • Hirth, G., and Kohlstedt, D.L. (1996) Water in the oceanic upper mantle: Implication for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93–108.Google Scholar

  • Ingrin, J., and Skogby, H. (2000) Hydrogen in nominally anhydrous upper-mantle minerals: Concentration levels and implications. European Journal of Mineralogy, 12, 543–570.Google Scholar

  • Ionov, D.A., and Hofmann, A.W. (1995) Nb-Ta-rich mantle amphiboles and micas—Implications for subduction-related metasomatic trace-element fractionations. Earth and Planetary Science Letters, 131, 341–356.Google Scholar

  • Ionov, D.A., and Wood, B.J. (1992) The oxidation-state of subcontinental mantle—Oxygen thermobarometry of mantle xenoliths from central-Asia. Contributions to Mineralogy and Petrology, 111, 179–193.Google Scholar

  • Ionov, D.A., Bodinier, J.L., Mukasa, S.B., and Zanetti, A. (2002) Mechanisms and sources of mantle metasomatism: Major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. Journal of Petrology, 43, 2219–2259.Google Scholar

  • Jung, H., and Karato, S. (2001) Water-induced fabric transitions in olivine. Science, 293, 1460–1463.Google Scholar

  • Jung, H., Katayama, I., Jiang, Z., Hiraga, I., and Karato, S. (2006) Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 421, 1–22.Google Scholar

  • Karato, S., and Jung, H. (1998) Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters, 157, 193–207.Google Scholar

  • Katayama, I., Karato, S.I., and Brandon, M. (2005) Evidence of high water content in the deep upper mantle inferred from deformation microstructures. Geology, 33, 613–616.Google Scholar

  • Klemme, S. (2004) The influence of Cr on the garnet-spinel transition in the Earth’s mantle: Experiments in the system MgO-Cr2O3-SiO2 and thermodynamic modelling. Lithos, 77, 639–646.Google Scholar

  • Kostenko, O., Jamtveit, B., Austrheim, H., Pollok, K., and Putnis, C. (2002) The mechanism of fluid infiltration in peridotites at Almklovdalen, western Norway. Geofluids, 2, 203–215.Google Scholar

  • Kushiro, I. (1972) Effect of water on composition of magmas formed at high-pressures. Journal of Petrology, 13, 311–334.Google Scholar

  • Lamb, W.M. (1987) Metamorphic fluids and granulite genesis. Ph.D. thesis, University of Wisconsin, 234 p.Google Scholar

  • Lamb, W.M., and Popp, R.K. (2009) Amphibole equilibria in mantle rocks: Determining values of mantle aH2O and implications for mantle H2O contents. American Mineralogist, 94, 41–52.Google Scholar

  • Lamb, W.M., and Valley, J.W. (1984) Metamorphism of reduced granulites in low-CO2 vapor-free environment. Nature, 312, 56–58.Google Scholar

  • Lamb, W.M., and Valley, J.W. (1985) C-O-H fluid calculations and granulite genesis. In A. Tobi and J. Touret, Eds., The Deep Proterozoic Crust in the North Atlantic Provinces, p. 119–131. Reidel Publishing.Google Scholar

  • Long, M.D., and van der Hilst, R.D. (2005) Upper mantle anisotropy beneath Japan from shear wave splitting. Physics of the Earth and Planetary Interiors, 151, 206–222.Google Scholar

  • Mainprice, D., Tommasi, A., Couvy, H., Cordier, P., and Frost, D.J. (2005) Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth’s upper mantle. Nature, 433, 731–733.Google Scholar

  • Maldener, J., Hosch, A., Langer, K., and Rauch, F. (2003) Hydrogen in some natural garnets studied by nuclear reaction analysis and vibrational spectroscopy. Physics and Chemistry of Minerals, 30, 337–344.Google Scholar

  • Mattioli, G.S., Baker, M.B., Rutter, M.J., and Stolper, E.M. (1989) Upper mantle oxygen fugacity and its relationship to metasomatism. Journal of Geology, 97, 521–536.Google Scholar

  • McCammon, C., and Kopylova, M.G. (2004) A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contributions to Mineralogy and Petrology, 148, 55–68.Google Scholar

  • Medaris, L.G. (1984) A geothermobarometric investigation of garnet peridotites in the western gneiss region of Norway. Contributions to Mineralogy and Petrology, 87, 72–86.Google Scholar

  • Mei, S., and Kohlstedt, D.L. (2000a) Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. Journal of Geophysical Research, 105, 21, 471–21, 481.Google Scholar

  • Mei, S., and Kohlstedt, D.L. (2000b) Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime. Journal of Geophysical Research, 105, 21, 457–21, 469.Google Scholar

  • Moresi, L., and Solomatov, V. (1998) Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophysical Journal International, 133, 669–682.Google Scholar

  • Mosenfelder, J.L., Deligne, N.I., Asimow, P.D., and Rossman, G.R. (2006a) Hydrogen incorporation in olivine from 2–12 GPa. American Mineralogist, 91, 285–294.Google Scholar

  • Mosenfelder, J.L., Sharp, T.G., Asimow, P.D., and Rossman, G.R. (2006b) Hydrogen incorporation in natural mantle olivines. Earths Deep Water Cycle, 168, 45–56.Google Scholar

  • Nakajima, J., and Hasegawa, A. (2004) Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan. Earth and Planetary Science Letters, 225, 365–377.Google Scholar

  • Nehru, C.E., and Wyllie, P.J. (1975) Compositions of glasses from St Pauls peridotite partially melted at 20 kilobars. Journal of Geology, 83, 455–471.Google Scholar

  • Nicholls, I.A., and Ringwood, A.E. (1972) Production of silica-saturated tholeiitic magmas in island arcs. Earth and Planetary Science Letters, 17, 243–246.Google Scholar

  • Nicholls, L.A., and Ringwood, A.E. (1973) Effect of Water on Olivine Stability in Tholeiites and Production of Silica-Saturated Magmas in Island-Arc Environment. Journal of Geology, 81, 285–300.Google Scholar

  • Nickel, K.G., and Green, D.H. (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth and Planetary Science Letters, 73, 158–170.Google Scholar

  • Niida, K., and Green, D.H. (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contributions to Mineralogy and Petrology, 135, 18–40.Google Scholar

  • Nimis, P., and Grütter, H. (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contributions to Mineralogy and Petrology, 159, 411–427.Google Scholar

  • Nimis, P., and Taylor, W.R. (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatitein-Cpx thermometer. Contributions to Mineralogy and Petrology, 139, 541–554.Google Scholar

  • Obata, M., and Ozawa, K. (2011) Topotaxic relationships between spinel and pyroxene in kelyphite after garnet in mantle-derived peridotites and their implications to reaction mechanism and kinetics. Mineralogy and Petrology, 101, 217–224.Google Scholar

  • Ohmoto, H., and Kerrick, D. (1977) Devolatilization equilibria in graphitic systems. American Journal of Science, 277, 1013–1044.Google Scholar

  • Ohuchi, T., Kawazoe, T., Nishihara, Y., and Irifune, T. (2012) Change of olivine a-axis alignment induced by water: Origin of seismic anisotropy in subduction zones. Earth and Planetary Science Letters, 317, 111–119.Google Scholar

  • O’Neill, H.St.C., and Wood, B.J. (1979) An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contributions to Mineralogy and Petrology, 70, 59–70.Google Scholar

  • O’Reilly, S.Y., and Griffin, W.L. (2013) Mantle metasomatism. In D.E. Harlov and H. Austrheim, Eds., Metasomatism and the Chemical Transformation of Rock, 471–533. Springer, Berlin.Google Scholar

  • Oxburgh, E.R. (1964) Upper mantle inhomogeneity and the low velocity zone. Geophysical Journal of the Royal Astronomical Society, 8, 456–462.Google Scholar

  • Peslier, A.H. (2010) A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. Journal of Volcanology and Geothermal Research, 197, 239–258.Google Scholar

  • Peslier, A.H., and Luhr, J.F. (2005) Water contents in anhydrous minerals from the upper-mantle (peridotites and eclogites). Geochimica et Cosmochimica Acta, 69, A745–A745.Google Scholar

  • Peslier, A.H., Woodland, A.B., Bell, D.R., and Lazarov, M. (2010) Olivine water contents in the continental lithosphere and the longevity of cratons. Nature, 467, 78–81.Google Scholar

  • Popp, R.K., and Bryndzia, L.T. (1992) Statistical analysis of Fe3+, Ti, and OH in kaersutite from alkalic igneous rocks and mafic mantle xenoliths. American Mineralogist, 77, 1250–1257.Google Scholar

  • Popp, R.K., Virgo, D., Yoder, H.S., Hoering, T.C., and Phillips, M.W. (1995) An experimental study of phase equilibria and Fe oxy-component in kaersutitic amphibole; implications for the fH2 and αH2O in the upper mantle. American Mineralogist, 80, 534–548.Google Scholar

  • Popp, R.K., Hibbert, H.A., and Lamb, W.M. (2006) Oxy-amphibole equilibria in Ti-bearing calcic amphiboles: Experimental investigation and petrologic implications for mantle-derived amphiboles. American Mineralogist, 91, 716–716.Google Scholar

  • Powell, W., Zhang, M., O’Reilly, S.Y., and Tiepolo, M. (2004) Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia. Lithos, 75, 141–171.Google Scholar

  • Rauch, M., and Keppler, H. (2002) Water solubility in orthopyroxene. Contributions to Mineralogy and Petrology, 143, 525–536.Google Scholar

  • Roberts, D., and Gee, D. (1985) An introduction to the structure of the Scandinavian Caledonides. In D. Gee and B. Sturt, Eds., The Caledonide Orogen-Scandinavia and Related Areas, p. 55–68. Wileys, Chichester.Google Scholar

  • Skogby, H. (1994) OH incorporation in synthetic clinopyroxene. American Mineralogist, 79, 240–249.Google Scholar

  • Smith, D.C. (1984) Coesite in clinopyroxene in the caledonides and its implications for geodynamics. Nature, 310, 641–644.Google Scholar

  • Solomatov, V. S. (1995) Scaling of temperature-dependent and stress-dependent viscosity convection. Physics of Fluids, 7, 266–274.Google Scholar

  • Spengler, D., van Roermund, H.L.M., Drury, M.R., Ottolini, L., Mason, P.R.D., and Davies, G.R. (2006) Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway. Nature, 440, 913–917.Google Scholar

  • Spengler, D., Brueckner, H.K., van Roermund, H.L.M., Drury, M.R., and Mason, P.R.D. (2009) Long-lived, cold burial of Baltica to 200 km depth. Earth and Planetary Science Letters, 281, 27–35.Google Scholar

  • Stalder, R., and Ludwig, T. (2007) OH incorporation in synthetic diopside. European Journal of Mineralogy, 19, 373–380.Google Scholar

  • Stalder, R., Klemme, S., Ludwig, T., and Skogby, H. (2005) Hydrogen incorporation in orthopyroxene: interaction of different trivalent cations. Contributions to Mineralogy and Petrology, 150, 473–485.Google Scholar

  • Sundvall, R., and Skogby, H. (2011) Hydrogen defect saturation in natural pyroxene. Physics and Chemistry of Minerals, 38, 335–344.Google Scholar

  • Tackley, P.J. (1998) Self-consistent generation of tectonic plates in three-dimensional mantle convection. Earth and Planetary Science Letters, 157, 9–22.Google Scholar

  • Taylor, W.R. (1998) An experimental test of some geothermometer and geobarometer formulations for upper manlte peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrbuch für Mineralogie, 173, 381–408.Google Scholar

  • van Roermund, H. (2009) Mantle-wedge garnet peridotites from the northernmost ultra-high pressure domain of the Western Gneiss Region, SW Norway. European Journal of Mineralogy, 21, 1085–1096.Google Scholar

  • van Roermund, H.L.M., Carswell, D.A., Drury, M.R., and Heijboer, T.C. (2002) Microdiamonds in a megacrystic garnet websterite pod from Bardane on the island of Fj⊘rtoft, western Norway: Evidence for diamond formation in mantle rocks during deep continental subduction. Geology, 30, 959–962.Google Scholar

  • Vannucci, R., Piccardo, G.B., Rivalenti, G., Zanetti, A., Rampone, E., Ottolini, L., Oberti, R., Mazzucchelli, M., and Bottazzi, P. (1995) Origin of LREE-depleted amphiboles in the subcontinental mantle. Geochimica et Cosmochimica Acta, 59, 1763–1771.Google Scholar

  • Voigt, M., and von der Handt, A. (2011) Influence of subsolidus processes on the chromium number in spinel in ultramafic rocks. Contributions to Mineralogy and Petrology, 162, 675–689.Google Scholar

  • Vrijmoed, J.C., van Roermund, H.L.M., and Davies, G.R. (2006) Evidence for diamond-grade ultra-high pressure metamorphism and fluid interaction in the Svartberget Fe-Ti garnet peridotite-websterite body, Western Gneiss Region, Norway. Mineralogy and Petrology, 88, 381–405.Google Scholar

  • Walther, J.V., and Orville, P.M. (1982) Volatile production and transport in regional metamorphism. Contributions to Mineralogy and Petrology, 79, 252–257.Google Scholar

  • Walther, J.V., and Wood, B.J. (1984) Rate and mechanism in prograde metamorphism. Contributions to Mineralogy and Petrology, 88, 246–259.Google Scholar

  • Warren, J.M., and Hauri, E.H. (2014) Pyroxenes as tracers of mantle water variations. Journal of Geophysical Research-Solid Earth, 119, 1851–1881.Google Scholar

  • Wood, B.J. (1990) An experimental test of the spinel peridotite oxygen barometer. Journal of Geophysical Research-Solid Earth and Planets, 95, 15, 845–15, 851.Google Scholar

  • Wood, B.J., and Virgo, D. (1989) Upper mantle oxidation state: Ferric iron contents of lherzolite spinels by 57Fe Mossbauer spectroscopy and resultant oxygen fugacities. Geochimica et Cosmochimica Acta, 53, 1277–1291.Google Scholar

  • Wood, B.J., and Walther, J.V. (1983) Rates of Hydrothermal Reactions. Science, 222, 413–415.Google Scholar

  • Wood, B.J., Bryndzia, L.T., and Johnson, K.E. (1990) Mantle oxidation-state and its relationship to tectonic environment and fluid speciation. Science, 248, 337–345.Google Scholar

  • Woodland, A.B., and Koch, M. (2003) Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth and Planetary Science Letters, 214, 295–310.Google Scholar

  • Woodland, A.B., Kornprobst, J., and Wood, B.J. (1992) Oxygen thermobarometry of orogenic lherzolite massifs. Journal of Petrology, 33, 203–230.Google Scholar

  • Wu, C.M., and Zhao, G.C. (2007) A recalibration of the garnet-olivine geothermometer and a new geobarometer for garnet peridotites and garnet-olivine-plagioclase-bearing granulites. Journal of Metamorphic Geology, 25, 497–505.Google Scholar

  • Zhang, C., and Duan, Z.H. (2009) A model for C-O-H fluid in the Earth’s mantle. Geochimica et Cosmochimica Acta, 73, 2089–2102.Google Scholar

  • Zhao, Y.-H., Ginsberg, S.B., and Kohlstedt, D.L. (2004) Solubility of hydrogen in olivine: dependence on temperature and iron content. Contributions of Mineralogy and Petrology, 147, 155–161.Google Scholar

About the article

Received: 2016-07-18

Accepted: 2016-12-23

Published Online: 2017-05-06

Published in Print: 2017-05-24

Citation Information: American Mineralogist, Volume 102, Issue 5, Pages 1021–1036, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5915.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in