Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 5


Rowleyite, [Na(NH4,K)9Cl4][ V25+,4+(P,As)O8]6n[H2O,Na,NH4,K,Cl], a new mineral with a microporous framework structure

Anthony R. Kampf
  • Corresponding author
  • Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mark A. Cooper / Barbara P. Nash / Thure E. Cerling / Joe Marty / Daniel R. Hummer / Aaron J. Celestian
  • Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Timothy P. Rose
  • Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas J. Trebisky
  • MMT Observatory, University of Arizona, 1540 East Second Street, Tucson, Arizona 85721, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-06 | DOI: https://doi.org/10.2138/am-2017-5977


Rowleyite, [Na(NH4,K)9Cl4][ V25+,4+(P,As)O8]6n[H2O,Na,NH4,K,Cl], is a new mineral species from the Rowley mine, Maricopa County, Arizona, U.S.A. It was found in an unusual low-temperature, apparently post-mining suite of phases that include various vanadates, phosphates, oxalates, and chlorides, some containing NH4+. Other secondary minerals found in association with rowleyite are antipinite, fluorite, mimetite, mottramite, quartz, salammoniac, struvite, vanadinite, willemite, wulfenite, and several other potentially new minerals. Analyzed δ13C values for the antipinite in association with rowleyite are consistent with a bat guano source. Crystals of rowleyite are very dark brownish green (appearing black) truncated octahedra up to about 50 μm in diameter. The streak is brownish green, the luster is vitreous, very thin fragments are transparent. The Mohs hardness is about 2, the tenacity is brittle, fracture is irregular, there is no cleavage, and the measured density is 2.23(2) g/cm3. Rowleyite is optically isotropic with n = 1.715(5). Electron microprobe analyses yielded the empirical formula [(NH4)8.81Na3.54K2.58)Σ14.93Cl6.29(H2O)16] [(V9.365+V2.644+)Σ12(P5.28As0.725+)Σ6O48]. Raman and infrared spectroscopy confirmed the presence of NH4 and H2O. Rowleyite is cubic, Fd3¯m, with a = 31.704(14) Å, V = 31867(42) Å3, and Z = 16. The crystal structure of rowleyite (R1 = 0.040 for 1218 Fo > 4σF reflections) contains [V4O16]12+ polyoxovanadate units that link to one another via shared vertices with [(P,As)O4]3– tetrahedra to form a 3D framework possessing large interconnected channels. The channels contain a 3D ordered [Na(NH4,K)9Cl4]6+ salt net, which apparently served as a template for the formation of the framework. In that respect, rowleyite can be considered a salt-inclusion solid (SIS). The rowleyite framework is among the most porous known.

Keywords: Rowleyite; new mineral species; polyoxovanadate; microporous framework; salt-inclusion solid; crystal structure; Rowley mine; Arizona

References cited

  • Baerlocher, C., McCusker, L.B., and Olson, D.H. (2007) Atlas of Zeolite Framework Types, 6th ed., 404 p. Elsevier Science.Google Scholar

  • Bastin, G.F., and Heijligers, H.J.M. (1991) Quantitative electron probe microanalysis of nitrogen. Scanning, 13, 325–342.Google Scholar

  • Bojar, H.-P., Walter, F., Baumgartner, J., and Färber, G. (2010) Ammineite, CuCl2(NH3)2, a new species containing an ammine complex: mineral data and crystal structure. Canadian Mineralogist, 48, 1359–1371.Google Scholar

  • Brese, N.E., and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.Google Scholar

  • Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Lyssenko, K.A., Belakovskiy, D.I., Färber, G., Möhn, G., and Van, K.V. (2015) Antipinite, KNa3Cu2(C2O4)4, a new mineral species from a guano deposit at Pabellón de Pica, Chile. Mineralogical Magazine, 79, 1111–1121.Google Scholar

  • Des Marais, D.J., Mitchell, J.M., Meinschein, W.G., and Hayes, J.M. (1980) The carbon isotope biogeochemistry of the individual hydrocarbons in bat guano and the ecology of the insectivorous bats in the region of Carlsbad, New Mexico. Geochimica et Cosmochimica Acta, 44, 2075–2086.Google Scholar

  • Fleming, T.H., Nuñez, R.A., and Sternberg, L.S.L. (1993) Seasonal changes in the diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis. Oecologia, 94, 72–75.Google Scholar

  • Frost, R.L., and Xi, Y. (2012) Vibrational spectroscopic study of the minerals cavansite and pentagonite Ca(V4+O)Si4O10·4H2O. Spectrochimica Acta A—Molecular and Biomolecular Spectroscopy, 95, 263–269.Google Scholar

  • Frost, R.L., Locke, A., and Martens, W.N. (2008) Synthesis and Raman spectroscopic characterization of the oxalate mineral wheatleyite Na2Cu2+(C2O4)2·2H2O, Journal of Raman Spectroscopy, 39, 901–908.Google Scholar

  • Frost, R.L., Palmer, S.J., Cejka, J., Sejkora, J., Plasil, J., Bahfenne, S., and Keeffe, E.C. (2011) A Raman spectroscopic study of the different vanadate groups in solid-state compounds—model case: mineral phases vesignieite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·H2O]. Journal of Raman Spectroscopy, 42, 1701–1710.Google Scholar

  • Frost, R.L., Scholz, R., Belotti, F.M., Lopez, A., and Theiss, F.L. (2015) A vibrational spectroscopic study of the phosphate mineral vantasselite Al4(PO4)3(OH)3·9H2O. Spectrochimica Acta A—Molecular and Biomolecular Spectroscopy, 147, 185–192.Google Scholar

  • Garavelli, A., Mitolo, D., Pinto, D., and Vurro, F. (2013) Lucabindiite, (K,NH4) As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy. American Mineralogist, 98, 470–477.Google Scholar

  • Garvie, L.A.J. (2003) Decay-induced biomineralization of the saguaro cactus (Carnegiea gigantea). American Mineralogist, 88, 1879–1888.Google Scholar

  • Hofmann, B.A., and Bernasconi, S.M. (1998) Review of occurrences and carbon isotope geochemistry of oxalate minerals: implications for the origin and fate of oxalate in diagenetic and hydrothermal fluids. Chemical Geology, 149, 127–146.Google Scholar

  • Holleman, A.F., and Wiberg, E. (2001) Inorganic Chemistry, p. 613 p. Academic Press.Google Scholar

  • Kampf, A.R., Nash, B.P., and Loomis, T.A. (2013) Phosphovanadylite-Ca, Ca[V44+ P2O8(OH)8]·12H2O, the Ca analogue of phosphovanadylite-Ba. American Mineralogist, 98, 439–443.Google Scholar

  • Malinovskii, A., Pobedimskaya, E.A., and Belov, N.V. (1976) Crystal structure of traskite. Soviet Physics Doklady, 21, 426–428.Google Scholar

  • Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. Canadian Mineralogist, 45, 1307–1324.Google Scholar

  • Mercè Bergadà, M., Villaverde, V., and Román, D. (2013) Microstratigraphy of the Magdalenian sequence at Cendres Cave (Teulada-Moraira, Alicante, Spain): Formation and diagenesis. Quaternary International, 315, 56–75.Google Scholar

  • O’Leary, M.H. (1988) Carbon isotopes in photosynthesis. BioScience, 38, 325–326.Google Scholar

  • Pankewitz, T., Lagutschenkov, A., Niedner-Schatteburg, G., Xantheas, S.S., and Lee, Y.T. (2007) Infrared spectrum of NH4+(H2O): Evidence for mode specific fragmentation. Journal of Chemical Physics, 126, 074307.Google Scholar

  • Pouchou, J.-L., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” In Heinrich, K.F.J., and Newbury, D.E., Eds., Electron Probe Quantitation, pp. 31–75. Plenum Press, New York.Google Scholar

  • Queen, W.L., Hwu, S., and Reighard, S. (2010) Salt-templated mesoporous solids comprised of interlinked polyoxovanadate clusters. Inorganic Chemistry, 49, 1316–1318.Google Scholar

  • Rivera, E.R., and Smith, B.N. (1979) Crystal morphology and 13carbon/12carbon composition of solid oxalate in cacti. Plant Physiology, 64, 966–970.Google Scholar

  • Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar

  • Schindler, M., Hawthorne, F.C., Baur, W.H. (2000): Crystal chemical aspects of vanadium: polyhedral geometries, characteristic bond valences, and polymerization of (VOn) polyhedra. Chemistry of Materials, 12, 1248–1259.Google Scholar

  • Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3–8.Google Scholar

  • Snow, M.R., Pring, A., and Allen, N. (2014) Minerals of the Wooltana Cave, Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia, 138, 214–230.Google Scholar

  • Thorpe, T.E. (1922) A Dictionary of Applied Chemistry, vol. 3, 735 p. Longmans, Green, and Company, London.Google Scholar

  • Varriale, L., Bhalla, N., Tonge, N.M., Ellis, A.M., and Wright, T.G. (2011) Nearinfrared spectroscopy of LiNH3: First observation of electronic spectrum. Journal of Chemical Physics, 134, 124304.Google Scholar

  • Von Wagner, R. (1900) Manual of Chemical Technology, translated and edited by W. Crookes, 968 p. Appleton and Company, New York.Google Scholar

  • Wilson, W.E., and Miller, D.K. (1974) Minerals of the Rowley mine. Mineralogical Record, 5, 10–30.Google Scholar

  • Wurster, C.M., McFarlane, D.A., and Bird, M.I. (2007) Spatial and temporal expression of vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat guano in the southern United States. Geochimica et Cosmochimica Acta, 71, 3302–3310.Google Scholar

  • Zheng, N., Bu, X., Wang, B., and Feng, P. (2002) Microporous and photoluminescent chalcogenide zeolite analogs. Science, 298, 2366–2369.Google Scholar

About the article

Received: 2016-10-05

Accepted: 2016-12-28

Published Online: 2017-05-06

Published in Print: 2017-05-24

Citation Information: American Mineralogist, Volume 102, Issue 5, Pages 1037–1044, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5977.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in