Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 5

Issues

Single-track length measurements of step-etched fission tracks in Durango apatite: “Vorsprung durch Technik

Raymond Jonckheere / Murat T. Tamer
  • Geologie, Technische Universität Bergakademie Freiberg, 09599 Freiberg (Sachsen), Germany
  • Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bastian Wauschkuhn / Florentine Wauschkuhn / Lothar Ratschbacher
Published Online: 2017-05-06 | DOI: https://doi.org/10.2138/am-2017-5988

Abstract

Fossil and induced confined fission-tracks in the Durango apatite do not etch to their full etchable lengths with the current protocols. Their mean lengths continue to increase at a diminished rate past the break in slope in a length vs. etch-time plot. The mean length of the fossil tracks increases from 14.5(1) to 16.2(1) μm and that of the induced tracks from 15.7(1) to 17.9(1) μm between 20 and 60 s etching (5.5 M HNO3; 21 °C); both are projected to converge toward ~18 μm after ~180 s. This increase is due to track etching, not bulk etching. The irregular length increments of individual tracks reveal a discontinuous track structure in the investigated length intervals. The mean lengths of the fossil and induced tracks for the standard etch time (20 s) for the (5.5 M HNO3; 21 °C) etch are thus not the result of a shortening of the latent fission tracks but instead of a lowering of the effective track-etch rate νT. The rate of length increase of individual fossil confined tracks correlates with their length: older tracks are shorter because they etch slower. Step etching thus makes it possible to some extent to distinguish between older and younger fossil fission tracks. Along-track νT measurements could reveal further useful paleo-temperature information. Because the etched length of a track at standard etch conditions is not its full etchable length, geometrical statistics based on continuous line segments of fixed length are less secure than hitherto held.

Keywords: Durango apatite; fission track; step etching; confined-track length

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References cited

  • Abdullin, F., Solé, J., and Solari, L. (2014) Fission-track dating and LA-ICP-MS multi-elemental analysis of the fluorapatite from Cerro de Mercado (Durango, Mexico). Revista Mexicana de Ciencias Geológicas, 31, 395–406 (in Spanish).Google Scholar

  • Afra, B., Lang, M., Rodriguez, M., Zhang, D.J., Giulian, R., Kirby, N., Ewing, R.C., Trautmann, C., Toulemonde, M., and Kluth, P. (2011) Annealing kinetics of latent particle tracks in Durango apatite. Physical Review B, 83, 064116.Google Scholar

  • Barbarand, J., Hurford, A., and Carter, A. (2003) Variation in apatite fission-track length measurement: Implications for thermal history modelling. Chemical Geology, 198, 77–106.Google Scholar

  • Bhandari, N., Bhat, S.G., Lal, D., Rajagopalan, G., Tamhane, A.S.J., and Venkatavaradan, V.S. (1971) Fission fragment tracks in apatite: Recordable track lengths. Earth and Planetary Science Letters, 13, 191–199.Google Scholar

  • Boyce, J.W., and Hodges, K.V. (2005) U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: Insights regarding the impact of recoil redistribution of radiogenic 4He on (U-Th)/He thermochronology. Chemical Geology, 219, 261–274.Google Scholar

  • Burtner, R.L., Nigrini, A., and Donelick, R.A. (1994) Thermochronology of lower Cretaceous source rocks in the Idaho-Wyoming Thrust Belt. American Association of Petroleum Geologists Bulletin, 78, 1613–1636.Google Scholar

  • Carlson, W.D. (1990) Mechanisms and kinetics of apatite fission-track annealing. American Mineralogist, 75, 1120–1139.Google Scholar

  • Carlson, W.D., Donelick, R.A., and Ketcham, R.A. (1999) Variability of apatite fission-track annealing kinetics: I. Experimental results. American Mineralogist, 84, 1213–1223.Google Scholar

  • Chew, D.M., Petrus, J.A., and Kamber, B.S. (2014) U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185–199.Google Scholar

  • Crowley, K.D., Cameron, M., and Schaefer, R.I. (1991) Experimental studies of annealing of etched fission tracks in fluorapatite. Geochimica et Cosmochimica Acta, 55, 1449–1465.Google Scholar

  • Dartyge, E., and Sigmund, P. (1985) Tracks of heavy ions in muscovite mica: Analysis of the rate of production of radiation defects. Physical Review B, 32, 5429–5431.Google Scholar

  • Dartyge, E., Duraud, J.P., Langevin, Y., and Maurette, M. (1981) New model of nuclear particle tracks in dielectric minerals. Physical Review B, 23, 5213–5229.Google Scholar

  • Donelick, R.A. (1991) Crystallographic orientation dependence of mean etchable fission track length in apatite: An empirical model and experimental observations. American Mineralogist, 76, 83–91.Google Scholar

  • Donelick, R.A. (1993) A method of fission track analysis utilizing bulk chemical etching of apatite. Patent No. 5,267,274, U.S.A.Google Scholar

  • Donelick, R.A. (1995) A method of fission track analysis utilizing bulk chemical etching of apatite. Patent No. 658,800, Australia.Google Scholar

  • Donelick, R.A., Roden, M.K., Moers, J.D., Carpenter, B.S., and Miller, D.S. (1990) Etchable length reduction of induced fission tracks in apatite at room temperature (~23°C): Crystallographic orientation effects and “initial” mean lengths. Nuclear Tracks and Radiation Measurements, 17, 261–265.Google Scholar

  • Donelick, R.A., Ketcham, R.A., and Carlson, W.D. (1999) Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. American Mineralogist, 84, 1224–1234.Google Scholar

  • Fleischer, R.L., Price, P.B., and Walker, R.M. (1965) Effects of temperature, pressure, and ionization on the formation and stability of fission tracks in minerals and glasses. Journal of Geophysical Research, 70, 1497–1502.Google Scholar

  • Fleischer, R.L., Woods, R.T., Hart, H.R. Jr., Price, P.B., and Short, N.M. (1974) Effect of shock on fission track dating of apatite and sphene crystals from the Hardhat and Sedan underground nuclear explosions. Journal of Geophysical Research, 79, 339–342.Google Scholar

  • Fleischer, R.L., Price, P.B., and Walker, R.M. (1975) Nuclear tracks in solids. Principles and applications. University of California Press, Berkeley, pp. 604.Google Scholar

  • Galbraith, R.F. (2002) Some remarks on fission-track observational biases and crystallographic orientation effects. American Mineralogist, 87, 991–995.Google Scholar

  • Galbraith, R.F., and Laslett, G.M. (1988) some calculations relevant to thermal annealing of fission tracks in apatite. Proceedings of the Royal Society of London A, 419, 305–321.Google Scholar

  • Galbraith, R.F., Laslett, G.M., Green, P.F., and Duddy, I.R. (1990) Apatite fission track analysis: Geological thermal history analysis based on a three-dimensional random process of linear radiation damage. Philosophical Transactions of the Royal Society of London A, 332, 419–438.Google Scholar

  • Gleadow, A.J.W., and Duddy, I.R. (1981) A natural long-term track annealing experiment for apatite. Nuclear Tracks, 5, 169–174.Google Scholar

  • Gleadow, A.J.W., Duddy, I.R., and Lovering, J.F. (1983) Fission track analysis: A new tool for the evaluation of thermal histories and hydrocarbon potential. Australian Petroleum Exploration Association Journal, 23, 93–102.Google Scholar

  • Green, P.F., Duddy, I.R., Gleadow, A.J.W., Tingate, P.R., and Laslett, G.M. (1986) Thermal annealing of fission tracks in apatite. 1. A qualitative description. Chemical Geology (Isotope Geoscience Section), 59, 237–253.Google Scholar

  • Hejl, E. (1995) Evidence for unetchable gaps in apatite fission tracks. Chemical Geology (Isotope Geoscience Section), 122, 259–269.Google Scholar

  • Jaskierowicz, G., Dunlop, A., and Jonckheere, R. (2004) Track formation in fluorapatite irradiated with energetic cluster ions. Nuclear Instruments and Methods in Physics Research B, 222, 213–227.Google Scholar

  • Johnstone, S., Hourigan, J., and Gallagher, C. (2013) LA-ICP-MS depth profile analysis of apatite: Protocol and implications for (U-Th)/He thermochronometry. Geochimica et Cosmochimica Acta, 109, 143–161.Google Scholar

  • Jonckheere, R. (2003) On the ratio of induced fission-track densities in a mineral and a co-irradiated muscovite external detector with reference to fission-track dating of minerals. Chemical Geology, 200, 41–58.Google Scholar

  • Jonckheere, R., Enkelmann, E., Min, M., Trautmann, C., and Ratschbacher, L. (2007) Confined fission tracks in ion-irradiated and step-etched prismatic sections of Durango apatite. Chemical Geology, 242, 202–217.Google Scholar

  • Jonckheere, R., Van den haute, P., and Ratschbacher, L. (2015) Standardless fission-track dating of the Durango apatite age standard. Chemical Geology, 417, 44–57.Google Scholar

  • Ketcham, R.A. (2003) Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements. American Mineralogist, 88, 817–829.Google Scholar

  • Ketcham, R.A. (2005) Forward and inverse modeling of low-temperature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58, 275–314.Google Scholar

  • Ketcham, R.A., Donelick, R.A., and Donelick, M.B. (2000) AFTSolve: A program for multi-kinetic modeling of apatite fission-track data. Geological Materials Research, 2(1) (electronic: 18 pages, 2 tables, 12 figures).Google Scholar

  • Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J., and Hurford, A.J. (2007) Improved measurement of fission-track annealing in apatite using c-axis projection. American Mineralogist, 92, 789–798.Google Scholar

  • Ketcham, R.A., Carter, A., and Hurford, A.J. (2015) Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite. American Mineralogist, 100, 1452–1468.Google Scholar

  • Kimura, J.-I., Danhara, T., and Iwano, H. (2000) A preliminary report on trace element determinations in zircon and apatite crystals using Excimer Laser Ablation–Inductively Coupled Plasma Mass Spectrometry (ExLA-ICPMS). Fission Track Newsletter, 13, 11–20.Google Scholar

  • Kluth, P., Afra, B., Rodriguez, M.D., Lang, M., Trautmann, C., and Ewing, R.C. (2012) Morphology and annealing kinetics of ion tracks in minerals. EPJ Web of Conferences, 35, 0300/1–4.Google Scholar

  • Kohn, B.P., Belton, D.X., Brown, R.W., Gleadow, A.J.W., Green, P.F., and Lovering, J.F. (2003) Comment on: “Experimental evidence for the pressure dependence of fission track annealing in apatite” by A.S. Wendt et al. [Earth and Planetary Science Letters 201 (2002) 593–607]. Earth and Planetary Science Letters, 215, 299–306.Google Scholar

  • Lang, M., Devanathan, R., Toulemonde, M., and Trautmann, C. (2015) Advances in understanding of swift heavy-ion tracks in complex ceramics. Current Opinion in Solid State and Materials Science, 19, 39–48.Google Scholar

  • Laslett, G.M., Gleadow, A.J.W., and Duddy, I.R. (1984) The relationship between fission track length and track density in apatite. Nuclear Tracks, 9, 29–38.Google Scholar

  • Li, W.-X., Wang, L., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227–235.Google Scholar

  • Li, W.-X., Lang, M., Gleadow, A.J.W., Zdorovets, M.V., and Ewing, R.C. (2012) Thermal annealing of unetched fission tracks in apatite. Earth and Planetary Science Letters, 321–322, 121–127.Google Scholar

  • Li, W.-X., Kluth, P., Schauries, D., Rodriguez, M.D., Lang, M., Zhang, F., Zdorovets, M., Trautmann, C., and Ewing, R.C. (2014) Effect of orientation on ion track formation in apatite and zircon. American Mineralogist, 99, 1127–1132.Google Scholar

  • Miro, S., Grebille, D., Chateigner, D., Pelloquin, D., Stoquert, J.-P., Grob, J.-J., Costantini, J.-M., and Studer, F. (2005) X-ray diffraction study of damage induced by swift heavy ion irradiation in fluorapatite. Nuclear Instruments and Methods in Physics Research B, 227, 306–318.Google Scholar

  • Moreira, P.A.F.P., Guedes, S., Iunes, P.J., and Hadler, J.C. (2010) Fission track chemical etching kinetic model. Radiation Measurements, 45, 157–162.Google Scholar

  • Morishita, T., Hattori, K.H., Terada, K., Matsumoto, T., Yamamoto, K., Takebe, M., Ishida, Y., Tamura, A., and Arai, S. (2008) Geochemistry of apatite-rich layers in the Finero phlogopite-peridotite massif (Italian Western Alps) and ion microprobe dating of apatite. Chemical Geology, 251, 99–111.Google Scholar

  • Paul, T.A., and Fitzgerald, P.G. (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. American Mineralogist, 77, 336–344.Google Scholar

  • Pellas, P., and Perron, C. (1984) Track formation models: A short review. Nuclear Instruments and Methods in Physics Research, 31, 387–393.Google Scholar

  • Schauries, D., Afra, B., Bierschenk, T., Lang, M., Rodriguez, M.D., Trautmann, C., Li, W.-X., Ewing, R.C., and Kluth, P. (2014) The shape of ion tracks in natural apatite. Nuclear Instruments and Methods in Physics Research B, 326, 117–120.Google Scholar

  • Schmidt, J.S., Lelarge, M.L.M.V., Conceicao, R.V., and Balzaretti, N.M. (2014) Experimental evidence regarding the pressure dependence of fission track annealing in apatite. Earth and Planetary Science Letters, 390, 1–7.Google Scholar

  • Soares, C.J., Guedes, S., Hadler, J.C., Mertz-Kraus, R., Zack, T., and Iunes, P.J. (2014) Novel calibration for LA-ICP-MS-based fission-track thermochronology. Physics and Chemistry of Minerals, 41, 65–73.Google Scholar

  • Tello, C.A., Palissari, R., Hadler, J.C., Iunes, P.J., Guedes, S., Curvo, E.A.C., and Paulo, S.R. (2006) Annealing experiments on induced fission tracks in apatite: Measurements of horizontal-confined track lengths and track densities in basal sections and randomly oriented grains. American Mineralogist, 91, 252–260.Google Scholar

  • Villa, F., Grivet, M., Rebetez, M., Dubois, C., Chambaudet, A., Chevarier, A., Martin, P., Brossard, F., Blondiaux, G., Sauvage, T., and Toulemonde, M. (1999) Damage morphology of Kr ion tracks in apatite: Dependence on dE/dx. Radiation Measurements, 31, 65–70.Google Scholar

  • Watt, S., and Durrani, S.A. (1985) Thermal stability of fission tracks in apatite and sphene: Using confined track length measurements. Nuclear Tracks, 10, 349–357.Google Scholar

  • Watt, S., Green, P.F., and Durrani, S.A. (1984) Studies of annealing anisotropy of fission tracks in mineral apatite using track-in-track, TINT, length measurements. Nuclear Tracks, 8, 371–375.Google Scholar

  • Wauschkuhn, B., Jonckheere, R., and Ratschbacher, L. (2015a) The KTB apatite fission-track profiles: Building on a firm foundation? Geochimica et Cosmochimica Acta, 167, 27–62.Google Scholar

  • Wauschkuhn, B., Jonckheere, R., and Ratschbacher, L. (2015b) Xe-and U-tracks in apatite and muscovite near the etching threshold. Nuclear Instruments and Methods in Physics Research B, 343, 146–152.Google Scholar

  • Young, E.J., Myers, A.T., Munson, E.L., and Conklin, N.M. (1969) Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Durango, Mexico. U.S. Geological Survey Professional Paper, 650, 84–93.Google Scholar

About the article

Received: 2016-10-18

Accepted: 2016-12-28

Published Online: 2017-05-06

Published in Print: 2017-05-24


Citation Information: American Mineralogist, Volume 102, Issue 5, Pages 987–996, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5988.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in