Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 6

Issues

Thermodynamic investigation of uranyl vanadate minerals: Implications for structural stability

Tyler L. Spano
  • Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame,Notre Dame, Indiana 46556, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ewa A. Dzik
  • Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame,Notre Dame, Indiana 46556, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Melika Sharifironizi
  • Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame,Notre Dame, Indiana 46556, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Megan K. Dustin
  • Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame,Notre Dame, Indiana 46556, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Madison Turner
  • Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame,Notre Dame, Indiana 46556, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter C. Burns
  • Corresponding author
  • Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame,Notre Dame, Indiana 46556, U.S.A.
  • Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-01 | DOI: https://doi.org/10.2138/am-2017-5894

Abstract

Understanding the crystal chemistry, materials properties, and thermodynamics of uranyl minerals and their synthetic analogs is an essential step for predicting and controlling the long-term environmental behavior of uranium. Uranyl vanadate minerals are relatively insoluble and widely disseminated within U ore deposits and mine and mill tailings. Pure uranyl vanadate mineral analogs were synthesized for investigation using high-temperature drop solution calorimetry. Calculated standard-state enthalpies of formation were found to be −4928.52 ± 13.90, −5748.81 ± 13.59, and −6402.88 ± 21.01, kJ/mol for carnotite, curienite, and francevillite, respectively. Enthalpies of formation from binary oxides for uranyl vanadate minerals exhibit a positive linear correlation as a function of the acidity of oxides. Normalized charge deficiency per anion (NCDA) is presented to relate bonding requirements of the structural units and interstitial complexes. An exponential correlation was observed between NCDA and energetic stability (enthalpy of formation from binary oxides) for the studied minerals. Additionally, NCDA and oxide acidity exhibit an exponential correlation where decreasing oxide acidity results in an exponential decrease in NCDA. The number of occurrences of uranyl vanadate mineral species are found to correlate with both enthalpy of formation from oxides and NCDA.

Keywords: Uranyl vanadate; carnotite; thermodynamics; structure stability

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References cited

  • Abraham, F., Dion, C., and Saadi, M. (1993) Carnotite analogs: synthesis, structure and properties of the Na1-KUO2VO4 solid solution (0 ≤ x ≤ 1). Journal of Materials Chemistry, 3(5), 459–463.Google Scholar

  • Appleman, D.E., and Evans, H. (1965) The crystal structures of synthetic anhydrous carnotite, K2(UO2)2V2O8, and its cesium analogue, Cs2(UO2)2V2O8. American Mineralogist, 50, 825–842.Google Scholar

  • Barton, P.B. (1957) Synthesis and properties of carnotite and its alkali analogs. Trace Elements Investigations. USGS Report.Google Scholar

  • Brugge, D., and Goble, R. (2002) The history of uranium mining and the Navajo people. American Journal of Public Health, 92(9), 1410–1419.Google Scholar

  • Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Canadian Mineralogist, 43(6), 1839–1894.Google Scholar

  • Burns, P.C., Ewing, R.C., and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: Polyhedron geometries, bond-valence parameters, and polymerizationof polyhedra. Canadian Mineralogist, 35, 1551–1570.Google Scholar

  • Cesbron, F., and Morin, N. (1968) Curienite, a new mineral species. A study of the series francevillite-curienite. Laboratoire de Mineralogie-Cristallographie, Paris.Google Scholar

  • Chenoweth, W.L. (1981) The uranium-vanadium deposits of the Uravan Mineral Belt and adjacent areas, Colorado and Utah. New Mexico Geological Society 32nd Annual Fall Field Conference Guidebook, 165–170.Google Scholar

  • Dahlkamp, F.J. (1993) Uranium Ore Deposits. Springer-Verlag.Google Scholar

  • Dumett, R. (1985) Africa’s strategic minerals during the Second World War. The Journal of African History, 26(4), 381–408.Google Scholar

  • Evans, H.T., and Garrels, R.M. (1958) Thermodynamic equilibria of vanadium in aqueous systems as applied to the interpretation of the Colorado Plateau ore deposits. Geochimica et Cosmochimica Acta, 15(1), 131–149.Google Scholar

  • Finch, R., and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Reviews in Mineralogy and Geochemistry, 38, 91–179.Google Scholar

  • Hawthorne, F.C. (2012) A bond-topological approach to theoretical mineralogy: crystal structure, chemical composition and chemical reactions. Physics and Chemistry of Minerals, 39(10), 841–874.Google Scholar

  • Hawthorne, F.C. (2015) Toward theoretical mineralogy: A bond-topological approach. American Mineralogist, 100(4), 696–713.Google Scholar

  • Hawthorne, F.C., and Schindler, M. (2008) Understanding the weakly bonded constituents in oxysalt minerals. Zeitschrift für Kristallographie, 223, 41–68.Google Scholar

  • Helean, K., Navrotsky, A., Vance, E., Carter, M., Ebbinghaus, B., Krikorian, O., Lian, J., Wang, L., and Catalano, J. (2002) Enthalpies of formation of Ce-pyrochlore, Ca0.93Ce1.00Ti2.035O7.00, U-pyrochlore, Ca1.46U0.234+U0.466+Ti1.85O7.00and Gd-pyrochlore, Gd2T2O7: three materials relevant to the proposed waste form for excess weapons plutonium. Journal of Nuclear Materials, 303(2), 226–239.Google Scholar

  • Hostetler, P.B., and Garrels, R.M. (1962) Transportation and precipitation of uranium and vanadium at low temperatures, with special reference to sandstone-type uranium deposits. Economic Geology and the Bulletin of the Society of Economic Geologists, 57(2), 137–167.Google Scholar

  • Janeczek, J. (1999) Mineralogy and geochemistry of natural fission reactors in Gabon. Reviews in Mineralogy and Geochemistry, 38, 321–392.Google Scholar

  • Karyakin, N.V., Chernorukov, N.G., Sulejmanov, E.V., Alimzhanov, M.I., Trostin, V.L., and Knyazev, A.V. (2000) The thermodynamic properties of uranyl pyrovanadate and uranovanadic acid. Zhurnal Fizicheskoj Khimii, 74(8), 1366–1371.Google Scholar

  • Karyakin, N., Chernorukov, N., Suleimanov, E., and Alimzhanov, M. (2003) Chemical thermodynamics of alkaline-earth metal uranovanadates. Radiochemistry, 45(5), 457–468.Google Scholar

  • Krivovichev, S.V., and Plášil, J. (2013) Mineralogy and crystallography of uranium. In P.C. Burns and G.E. Sigmon, Eds., Uranium: From Cradle to Grave. Mineralogical Association of Canada Short Courses, 43, 15–119.Google Scholar

  • Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42(6), 547–569.Google Scholar

  • Mereiter, K. (1986) Crystal structure refinements of two francevillites, (Ba,Pb) [(UO2)2V2O8].5H2O. Neues Jahrbuch für Mineralogie Monatshefte, 552–560.Google Scholar

  • Mindat.org (2016) http://www.mindat.org/min-907.html, http://www.mindat.org/min-1196.html, http://www.mindat.org/min-1589.html. Hudson Institute of Mineralogy.

  • Molodetsky, I., Navrotsky, A., DiSalvo, F., and Lerch, M. (2000) Energetics of oxidation of oxynitrides: Zr–N–O, Y–Zr–N–O, Ca–Zr–N–O, and Mg–Zr–N–O. Journal of Materials Research, 15(11), 2558–2570.Google Scholar

  • Murata, K.J., Cisney, E.A., Stieff, L.R., and Zworykin, E.V. (1949) Synthesis, Base Exchange, and Photosensitivity of Carnotite, Tyuyamunite, and Related Minerals, 12 p. Trace Elements Investigations, U.S. Geological Survey.Google Scholar

  • Navrotsky, A. (1977) Progress and new directions in high temperature calorimetry. Physics and Chemistry of Minerals, 2(1), 89–104.Google Scholar

  • Navrotsky, A.(1997) Progress and new directions in high temperature calorimetry revisited. Physics and Chemistry of Minerals, 24(3), 222–241.Google Scholar

  • Navrotsky, A. (2014) Progress and new directions in calorimetry: A 2014 perspective. Journal of the American Ceramic Society, 97(11), 3349–3359.Google Scholar

  • Navrotsky, A., Shvareva, T., and Guo, X. (2013) Thermodynamics of uranium minerals and related materials. In P.C. Burns and G.E. Sigmon, Eds., Uranium: Cradle to Grave, 43, p. 147–164. Mineralogical Association of Canada, Winnipeg, Manitoba.Google Scholar

  • Plasil, J. (2014) Oxidation-hydration weathering of uraninite: the current state-of-knowledge. Journal of Geosciences, 59(2), 99–114.Google Scholar

  • Requena Yáñez, J., Reyes Cortés, M., Torres Moye, E., Lardizabal, D., Riveros, H., and Montero Cabrera, M. (2012) Synthesis of potassium and calcium uranovanadates, analogs of carnotite and metatyuyamunite minerals. Revista mexicana de física, 58(3), 253–257.Google Scholar

  • Robie, R.A., and Hemingway, B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10^5 pascals) pressure and at higher temperatures, 461 p. Bulletin, U.S. Geological Survey.Google Scholar

  • Schindler, M., and Hawthorne, F.C. (2004) A bond-valence approach to the uranyl-oxide hydroxy-hydrate minerals: chemical composition and occurrence. Canadian Mineralogist, 42(6), 1601–1627.Google Scholar

  • Schindler, M., and Hawthorne, F.C. (2008) The stereochemistry and chemical composition of interstitial complexes in uranyl-oxysalt minerals. Canadian Mineralogist, 46(2), 467–501.Google Scholar

  • Schindler, M., Hawthorne, F.C., and Baur, W.H. (2000) A crystal-chemical approach to the composition and occurrence of vanadium minerals Canadian Mineralogist, 38(6), 1443–1456.Google Scholar

  • Schindler, M., Mutter, A., Hawthorne, F.C., and Putnis, A. (2004a) Prediction of crystal morphology of complex uranyl-sheet minerals. I. Theory. Canadian Mineralogist, 42(6), 1629–1649.Google Scholar

  • Schindler, M., Mutter, A., Hawthorne, F.C., and Putnis, A. (2004b) Prediction of crystal morphology of complex uranyl-sheet minerals. II. Observations. Canadian Mineralogist, 42(6), 1651–1666.Google Scholar

  • Shvareva, T.Y., Fein, J.B., and Navrotsky, A. (2012) Thermodynamic properties of uranyl minerals: Constraints from calorimetry andsolubility measurements. Industrial & Engineering Chemistry Research, 51(2), 607–613.Google Scholar

  • Smith, D.W. (1987) An acidity scale for binary oxides. Journal of Chemical Education, 64(6), 480.Google Scholar

  • Tokunaga, T.K., Kim, Y., and Wan, J. (2009) Potential remediation approach for uranium-contaminated groundwaters through potassium uranyl vanadate precipitation. Environmental Science & Technology, 43(14), 5467–5471.Google Scholar

  • Weeks, A.D. (1961) Mineralogy and geochemistry of vanadium in the Colorado Plateau. Journal of the Less Common Metals, 3(6), 443–450.Google Scholar

About the article

Received: 2016-06-22

Accepted: 2016-12-23

Published Online: 2017-06-01

Published in Print: 2017-06-27


Citation Information: American Mineralogist, Volume 102, Issue 6, Pages 1149–1153, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5894.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in