Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 7

Issues

Revisiting the nontronite Mössbauer spectra

Fabien Baron
  • Corresponding author
  • Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR CNRS 7285 Université de Poitiers, Poitiers, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sabine Petit
  • Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR CNRS 7285 Université de Poitiers, Poitiers, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Pentrák
  • Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alain Decarreau
  • Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR CNRS 7285 Université de Poitiers, Poitiers, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joseph W. Stucki
  • Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-17 | DOI: https://doi.org/10.2138/am-2017-1501x

Abstract

The distribution of ferric iron (Fe3+) between the octahedral and tetrahedral sheets of smectites is still an active problem due to the difficulty of identifying and quantifying the tetrahedral ferric iron ([4]Fe3+). Mössbauer spectroscopy has often been used to address this problem, with the spectra being fitted by a sum of doublets, but the empirical attribution of each doublet has failed to yield a uniform interpretation of the spectra of natural reference Fe3+-rich smectites, especially with regard to [4]Fe3+, because little consensus exists as to the [4]Fe3+ content of natural samples. In an effort to resolve this problem, the current study was undertaken using a series of synthetic nontronites [Si4x[4]Fex3+][6]Fe23+O10(OH)2Nax with x ranging from 0.51 to 1.3. Mössbauer spectra were obtained at 298, 77, and 4 K. Statistically acceptable deconvolutions of the Mössbauer spectra at 298 and 77 K were used to develop a model of the distribution of tetrahedral substitutions, taking into account: (1) the [4]Fe3+ content; (2) the three possible tetrahedral cationic environments around [6]Fe3+, i.e., [4Si]-(3[6]Fe3+), [3Si [4]Fe3+]-(3[6]Fe3+), and [2Si 2[4]Fe3+]-(3[6]Fe3+); and (3) the local environment around a [4]Fe3+, i.e., [3Si]-(2[6]Fe3+) respecting Lowenstein’s Rule. This approach allowed the range of Mössbauer parameters for [6]Fe3+ and [4]Fe3+ to be determined and then applied to spectra of natural Fe3+-rich smectites. Results revealed the necessity of taking into account the distribution of tetrahedral cations ([4]R3+) around [6]Fe3+ cations to deconvolute the Mössbauer spectra, and also highlighted the influence of sample crystallinity on Mössbauer parameters.

Keywords: Clay minerals; iron; Mössbauer spectroscopy; nontronite; smectites; tetrahedral iron

References cited

  • Annersten, H., Devanarayanan, S., Häggström, L., and Wäppling, R. (1971) Mössbauer study of synthetic ferriphlogopite KMg3Fe3+Si3O10(OH)2. Physica status solidi b, 48, 137–138.Google Scholar

  • Baron, F., Petit, S., Tertre, E., and Decarreau, A. (2016) Influence of aqueous Si and Fe speciation on tetrahedral Fe3+ substitutions in nontronites: a clay synthesis approach. Clays and Clay Minerals, 64, 230–244.Google Scholar

  • Barron, P.F., Slade, P., and Frost, R.L. (1985) Ordering of aluminum in tetrahedral sites in mixed-layer 2:1 phyllosilicates by solid-state high-resolution NMR. The Journal of Physical Chemistry, 89, 3880–3885.Google Scholar

  • Besson, G., Bookin, A.S., Dainyak, L.G., Rautureau, M., Tsipursky, S.I., Tchoubar, C., and Drits, V.A. (1983) Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronites. Journal of Applied Crystallography, 16, 374–383.Google Scholar

  • Bonnin, D., Calas, G., Suquet, H., and Pezerat, H. (1985) Sites occupancy of Fe3+ in Garfield nontronite: A spectroscopic study. Physics and Chemistry of Minerals, 12, 55–64.Google Scholar

  • Cardile, C.M. (1989) Tetrahedral iron in smectite; a critical comment. Clays and Clay Minerals, 37, 185–188.Google Scholar

  • Cardile, C.M., and Johnston, J.H. (1985) Structural studies of nontronites with different iron contents by 57Fe Mössbauer spectroscopy. Clays and Clay Minerals, 33, 295–300.Google Scholar

  • Cardile, C.M., Johnson, J.H., and Dickson, D.P.E. (1986) Magnetic ordering at 4.2 and 1.3 K in nontronites of different iron contents; a 57Fe Mössbauer spectroscopic study. Clays and Clay Minerals, 34, 233–238.Google Scholar

  • Cashion, J.D., Gates, W.P., and Thomson, A. (2008) Mössbauer and IR analysis of iron sites in four ferruginous smectites. Clay Minerals, 43, 83–93.Google Scholar

  • Cashion, J.D., Gates, W.P., and Riley, G.M. (2010) Origin of the two quadrupole doublets in NAu-1 nontronite. Journal of Physics: Conference Series, 217, 012065.Google Scholar

  • Cashion, J.D., Gates, W.P., Greaves, T.L. and Dorjkhaidav, O. (2011) Identification of Fe3+ site coordinations in Nau-2 nontronite. Proceedings of the 35th Annual Australian/New Zealand, Condensed Matter and Materials Meeting, Wagga Wagga, Australia.Google Scholar

  • Circone, S., Navrotsky, A., Kirkpatrick, R.J., and Graham, C.M. (1991) Substitution of super [6,4]Al in phlogopite; mica characterization, unit-cell variation, 27Al and 29Si MAS-NMR spectroscopy, and Al-Si distribution in the tetrahedral sheet. American Mineralogist, 76, 1485–1501.Google Scholar

  • Coey, J.M.D. (1980) Clay minerals and their transformations studied with nuclear techniques: the contribution of Mössbauer spectroscopy. Atomic Energy Review, 18, 73–124.Google Scholar

  • Coey, J.M.D. (1984) Mössbauer spectroscopy of silicate minerals. In G.J. Long, Ed., Mössbauer spectroscopy applied to inorganic chemistry, vol. 1, p. 443–509. New York.Google Scholar

  • Daynyak, L.G., and Drits, V.A. (1987) Interpretation of Mössbauer spectra of nontronite, celadonite, and glauconite. Clays and Clay Minerals, 35, 363–372.Google Scholar

  • De Grave, E., and Van Alboom, A. (1991) Evaluation of ferrous and ferric Mössbauer fractions. Physics and Chemistry of Minerals, 18, 337–342.Google Scholar

  • Decarreau, A., and Petit, S. (2014) Fe3+/Al3+ partitioning between tetrahedral and octahedral sites in dioctahedral smectites. Clay Minerals, 49, 657–665.Google Scholar

  • Decarreau, A., Petit, S., Martin, F., Farges, F., Vieillard, P., and Joussein, E. (2008) Hydrothermal synthesis, between 75 and 150°C, of high-charge, ferric nontronites. Clays and Clay Minerals, 56, 322–337.Google Scholar

  • Drits, V.A., Kameneva, M.Y., Sakharov, B.A., and Dainyak, L.G. (1992) Problems in the determination of the actual structure of glauconite and related microdivided minerals. Nauka, Novosobirsk, 360 pp. (in Russian).Google Scholar

  • Drits, V.A., McCarty, D.K., and Zviagina, B.B. (2006) Crystal-chemical factors responsible for the distribution of octahedral cations over trans- and cis-sites in dioctahedral 2:1 layer silicates. Clays and Clay Minerals, 54, 131–152.Google Scholar

  • Dyar, M.D. (1987) A review of Mössbauer data on trioctahedral micas; evidence for tetrahedral Fe3+ and cation ordering. American Mineralogist, 72, 102–112.Google Scholar

  • Dyar, M.D.(1993) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas; discussion. American Mineralogist, 78, 665–668.Google Scholar

  • Dyar, M.D., and Schaefer, M.W. (2008) Discriminating among layer silicates using remote Mössbauer spectroscopy. Martian Phyllosilicates: Recorders of aqueous processes, LPI abstract.Google Scholar

  • Dyar, M.D., Agresti, D.G., Schaefer, M.W., Grant, C.A., and Sklute, E.C. (2006) Mössbauer spectroscopy of Earth and planetary materials. Annual Review of Earth and Planetary Sciences, 34, 83–125.Google Scholar

  • Dyar, M.D., Schaefer, M.W., Sklute, E.C., and Bishop, J.L. (2008) Mössbauer spectroscopy of phyllosilicates: effects of fitting models on recoil-free fractions and redox ratios. Clay Minerals, 43, 3–33.Google Scholar

  • Friedlander, L.R., Glotch, T.D., Bish, D.L., Darby Dyar, M., Sharp, T.G., Sklute, E.C., and Michalski, J.R. (2015) Structural and spectroscopic changes to natural nontronite induced by experimental impacts between 10 and 40 GPa. Journal of Geophysical Research: Planets, 120, 888–912.Google Scholar

  • Gates, W.P., Slade, P.G., Manceau, A., and Lanson, B. (2002) Site occupancies by iron in nontronites. Clays and Clay Minerals, 50, 223–239.Google Scholar

  • Goodman, B.A. (1978) The Mössbauer spectra of nontronites: consideration of an alternative assignment. Clays and Clay Minerals, 26, 176–177.Google Scholar

  • Goodman, B.A., Russell, J.D., Fraser, A.R., and Woodhams, F.W.D. (1976) A Mössbauer and I.R. spectroscopic study of the structure of nontronite. Clays and Clay Minerals, 24, 53–59.Google Scholar

  • Heller-Kallai, L., and Rozenson, I. (1981) The use of Mössbauer spectroscopy of iron in clay mineralogy. Physics and Chemistry of Minerals, 7, 223–238.Google Scholar

  • Herrero, C.P., Sanz, J., and Serratosa, J.M. (1985) Tetrahedral cation ordering in layer silicates by 29Si NMR spectroscopy. Solid State Communications, 53, 151–154.Google Scholar

  • Herrero, C.P., Gregorkiewitz, M., Sanz, J., and Serratosa, J.M. (1987) 29Si MAS-NMR spectroscopy of mica-type silicates: Observed and predicted distribution of tetrahedral Al-Si. Physics and Chemistry of Minerals, 15, 84–90.Google Scholar

  • Herrero, C.P., Sanz, J., and Serratosa, J.M. (1989) Dispersion of charge deficits in a tetrahedral sheet of phyllosilicates: analysis from 29Si NMR spectra. The Journal of Physical Chemistry, 93, 4311–4315.Google Scholar

  • Johnston, J.H., and Cardile, C.M. (1985) Iron sites in nontronite and the effect of interlayer cations from Mössbauer spectra. Clays and Clay Minerals, 33, 21–30.Google Scholar

  • Keeling, J.L., Raven, M.D., and Gates, W.P. (2000) Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia. Clays and Clay Minerals, 48, 537–548.Google Scholar

  • Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., and others. (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science, 306, 1740–1745.Google Scholar

  • Klingelhöfer, G., DeGrave, E., Morris, R.V., Alboom, A., Resende, V.G., Souza, P.A., Rodionov, D., Schröder, C., Ming, D.W., and Yen, A. (2006) Mössbauer spectroscopy on Mars: goethite in the Columbia Hills at Gusev crater. Hyperfine Interactions, 166, 549–554.Google Scholar

  • Köster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E., and Onnich, K. (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Minerals, 34, 579–599.Google Scholar

  • Lear, P.R., and Stucki, J.W. (1990) Magnetic properties and site occupancy of iron in nontronite. Clay Minerals, 25, 3–13.Google Scholar

  • Luca, V. (1991) Detection of tetrahedral Fe3+ sites in nontronite and vermiculite by Mössbauer spectroscopy. Clays and Clay Minerals, 39, 467–477.Google Scholar

  • Manceau, A., Chateigner, D., and Gates, W.P. (1998) Polarized EXAFS, distance-valence least-squares modeling (DVLS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite. Physics and Chemistry of Minerals, 25, 347–365.Google Scholar

  • Manceau, A., Lanson, B., Drits, V.A., Chateigner, D., Gates, W.P., Wu, J., Huo, D., and Stucki, J.W. (2000) Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites. American Mineralogist, 85, 133–152.Google Scholar

  • Moore, D.M., and Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals, 378 p. Oxford.Google Scholar

  • Morris, R.V., Klingelhöfer, G., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A., Yen, A., Gellert, R., Evlanov, E.N., Foh, J., and others. (2004) Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover. Science, 305, 833–836.Google Scholar

  • Murad, E. (2008) 57Fe Mössbauer spectroscopy: a tool for the remote characterization of phyllosilicates? Martian Phyllosilicates: Recorders of aqueous processes, LPI abstract.Google Scholar

  • Murad, E. (2013) Mössbauer spectroscopy. In F. Bergaya and G. Lagaly, Eds., Handbook of Clay Science, p. 11–24. Elsevier.Google Scholar

  • Murad, E., and Cashion, J. (2004) Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization. Springer.Google Scholar

  • Murad, E., Cashion, J.D., and Brown, L.J. (1990) Magnetic ordering in Garfield nontronite under applied magnetic fields. Clay Minerals, 25, 261–269.Google Scholar

  • Petit, S. (2006) Fourier transform infrared spectroscopy. In F. Bergaya and G. Lagaly, Eds., Handbook of Clay Science, p. 909–918. Elsevier.Google Scholar

  • Petit, S., Prot, T., Decarreau, A., Mosser, C., and Toledo-Groke, M.C. (1992) Crystallochemical study of a population of particles in smectites from a lateritic weathering profile. Clays and Clay Minerals, 40, 436–445.Google Scholar

  • Petit, S., Decarreau, A., Gates, W., Andrieux, P., and Grauby, O. (2015) Hydrothermal synthesis of dioctahedral smectites: The Al–Fe3+ chemical series. Part II: Crystal-chemistry. Applied Clay Science, 104, 96–105.Google Scholar

  • Rancourt, D.G. (1993) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas; reply. American Mineralogist, 78, 669–671.Google Scholar

  • Rancourt, D.G.(1994) Mössbauer spectroscopy of minerals: I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from quadrupole splitting distributions. Physics and Chemistry of Minerals, 21, 244–249.Google Scholar

  • Rozenson, I., and Heller-Kallai, L. (1977) Mössbauer spectra of dioctahedral smectites. Clays and Clay Minerals, 25, 94–101.Google Scholar

  • Sanz, J., and Robert, J.-L. (1992) Influence of structural factors on 29Si and 27Al NMR chemical shifts of phyllosilicates 2:1. Physics and Chemistry of Minerals, 19, 39–45.Google Scholar

  • Sanz, J., and Serratosa, J.M. (1984) 29Si and 27Al high-resolution MAS-NMR spectra of phyllosilicates. Journal of the American Chemical Society, 106, 4790–4793.Google Scholar

  • Sanz, J., Robert, J.-L., Diaz, M., and Sobrados, I. (2006) Influence of charge location on 29Si NMR chemical shift of 2:1 phyllosilicates. American Mineralogist, 91, 544–550.Google Scholar

  • Schneiderhöhn, P. (1965) Nontronit vom Hohen Hagen und Chloropal vom Meenser Steinberg bei Göttingen. Tschermaks mineralogische und petrographische Mitteilungen, 10, 385–399.Google Scholar

  • Schröder, C., Klingelhöfer, G., Morris, R.V., Bernhardt, B., Blumers, M., Fleischer, I., Rodionov, D.S., López, J.G., and de Souza, P.A. (2011) Field-portable Mössbauer spectroscopy on Earth, the Moon, Mars, and beyond. Geochemistry: Exploration, Environment, Analysis, 11, 129–143.Google Scholar

  • Schwertmann, U., and Cornell, R.M. (1991) Iron oxides in the laboratory, VCH. Weinheim, Germany.Google Scholar

  • Stucki, J.W. (2013) Properties and behaviour of iron in clay minerals. In F. Bergaya and G. Lagaly, Eds., Handbook of Clay Science, p. 559–612. Elsevier.Google Scholar

  • Stucki, J.W., Su, K., Pentráková, L., and Pentrák, M. (2014) Methods for handling redox-sensitive smectite dispersions. Clay Minerals, 49, 359–377.Google Scholar

  • Townsend, M.G., Longworth, G., Ross, C.A.M., and Provencher, R. (1987) Ferromagnetic or antiferromagnetic Fe III spin configurations in sheet silicates. Physics and Chemistry of Minerals, 15, 64–70.Google Scholar

  • Wolters, F., Lagaly, G., Kahr, G., Nueesch, R., and Emmerich, K. (2009) A comprehensive characterization of dioctahedral smectites. Clays and Clay Minerals, 57, 115–133.Google Scholar

About the article

Received: 2016-12-02

Accepted: 2017-03-20

Published Online: 2017-07-17

Published in Print: 2017-07-26


Citation Information: American Mineralogist, Volume 102, Issue 7, Pages 1501–1515, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-1501x.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in