Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

American Mineralogist

Journal of Earth and Planetary Materials

Hrsg. v. Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Alle Formate und Preise
Weitere Optionen …
Band 102, Heft 7


Secondary minerals associated with Lassen fumaroles and hot springs: Implications for martian hydrothermal deposits

Lindsay J. McHenry
  • Department of Geosciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Avenue, Milwaukee, Wisconsin 53211, U.S.A.
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ George L. Carson
  • Department of Geosciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Avenue, Milwaukee, Wisconsin 53211, U.S.A.
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Darian T. Dixon
  • Korrespondenzautor
  • Department of Geosciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Avenue, Milwaukee, Wisconsin 53211, U.S.A.
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Christopher L. Vickery
  • Department of Geosciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Avenue, Milwaukee, Wisconsin 53211, U.S.A.
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
Online erschienen: 17.07.2017 | DOI: https://doi.org/10.2138/am-2017-5839


The active hot springs, fumaroles, and mud pots of the southwestern Lassen hydrothermal system include various alteration environments, which produce a range of hydrothermal mineral assemblages. Analysis of water, mineral precipitates, altered sediment, and rock samples collected at and near these features at Sulphur Works, Bumpass Hell, Little Hot Springs Valley, and Growler and Morgan Hot Springs reveals conditions ranging from ~100 °C acid-sulfate fumaroles (e.g., Sulphur Works and Bumpass Hell) to near-neutral hot springs (e.g., Growler and Morgan), and includes both oxidizing and reducing conditions. Resulting hydrothermal minerals include a wide variety of sulfates (dominated by Al-sulfates, but also including Fe2+, Fe3+, Ca, Mg, and mixed-cation sulfates), sulfides (pyrite and marcasite), elemental sulfur, and smectite and kaolinite clays. Most altered samples contain at least one silica phase, most commonly quartz, but also including cristobalite, tridymite, and/or amorphous silica. Quartz and other silica phases are not as abundant in the less altered rock samples, thus their abundance in some hydrothermally altered sediment samples suggests a detrital origin, or formation by hydrothermal alteration (either modern or Pleistocene); this requires a high degree of diagenetic (or epigenetic) maturation. These results support a previously identified model that the Lassen hydrothermal system involves the de-coupling of a vapor phase (which becomes acidic as it oxidizes near the surface, producing acid-sulfate fumaroles at higher elevations at Sulphur Works and Bumpass Hell) from the residual near neutral thermal waters that emerge as hot springs at lower elevations (Growler and Morgan). Because both acid-sulfate fumarole and near-neutral sinter-producing hot springs have been invoked to explain the silica-rich deposits observed by the Mars Exploration Rover Spirit near Home Plate in the Columbia Hills on Mars, Lassen can serve as a useful terrestrial analog for comparison.

Keywords: Mars; hydrothermal alteration; sulfate minerals; element mobility

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References cited

  • Arroyo, F.A., Siering, P.L., Hampton, J.S., McCartney, A., Hurst, M.P., Wolfe, G.V., and Wilson, M.S. (2015) Isolation and characterization of novel iron-oxidizing autotrophic and mixotrophic bacteria from Boiling Springs Lake, an oligotrophic, acidic geothermal habitat. Geomicrobiology Journal, 32, 140–157.Google Scholar

  • Bibring, J.-P., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., Forget, F., and the OMEGA team. (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science, 312, 400–404.Google Scholar

  • Bigham, J.M., and Nordstrom, D.K. (2000). Iron and aluminum hydroxysulfates from acid sulfate waters. Reviews in Mineralogy and Geochemistry, 40, 351–403.Google Scholar

  • Byers, H., McHenry, L.J., and Grundl, T.J. (2016) Forty-nine major and trace element concentrations measured in Soil Reference Materials NIST SRM 2586, 2587, 2709a, 2710a and 2711a using ICP-MS and Wavelength Dispersive-XRF. Geostandards and Geoanalytical Research, 40, 433–445.Google Scholar

  • Clynne, M.A., Janik, C.J., and Muffler, L.J.P. (2003) “Hot water” in Lassen Volcanic National Park—Fumaroles, steaming ground, and boiling mudpots. U.S. Geological Survey Fact Sheet 101-02.Google Scholar

  • Clynne, M.P., Muffler, L.J.P., Siems, D.F., Taggart, J.E. Jr., and Bruggman, P. (2008) Major and EDXRF trace element chemical analyses of volcanic rocks from Lassen Volcanic National Park and vicinity, California. U.S. Geological Survey Open-File Report 2008-1091.Google Scholar

  • Day, A.L., and Allen, E.T. (1925) The Volcanic Activity and Hot Springs of Lassen Peak. The Carnegie Institution of Washington, D.C., 190pp.Google Scholar

  • Geptner, A.R., Ivanovskaya, T.A., and Pokrovskaya, E.V. (2005) Hydrothermal fossilization of microorganisms at the Earth’s surface in Iceland. Lithology and Mineral Resources, 40, 505–520.Google Scholar

  • Getahun, A., Reed, M.H., and Symonds, R. (1996) Mount St. Augustine volcano fumarole wall rock alteration: Mineralogy, zoning, composition and numerical models of its formation process. Journal of Volcanology and Geothermal Research, 712, 73–107.Google Scholar

  • Goorissen, H.P., Boschker, H.T., Stams, A.J., and Hansen, T.A. (2003) Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53, 1223–1229.Google Scholar

  • Graetsch, H. (1994). Structural characteristics of opaline and microcrystalline silica minerals. Reviews in Mineralogy, 29, 209–232.Google Scholar

  • Gray, J.E., and Coolbaugh, M.F. (1994) Geology and geochemistry of Summitville, Colorado; an epithermal acid sulfate deposit in a volcanic dome. Economic Geology, 89, 1906–1923.Google Scholar

  • Herdianita, N.R., Browne, P.R.L., Rodgers, K.A., and Campbell, K.A. (2000) Mineralogical and textural changes accompanying ageing of silica sinter. Mineralium Deposita, 35, 48–62.Google Scholar

  • Hynek, B.M., Beach, M., and Hoke, M.R.T. (2010) Updated global map of martian valley networks and implications for climate and hydrologic processes. Journal of Geophysical Research, 115, E09008.Google Scholar

  • Ingebritsen, S.E., Bergfield, D., Clor, L.E., and Evans, W.C. (2016) The Lassen hydrothermal system. American Mineralogist, 101, 343–353.Google Scholar

  • Janik, C.J., and McLaren, M.K. (2010) Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system. Journal of Volcanology and Geothermal Research, 189, 257–277.Google Scholar

  • John, D.A., Rytuba, J.J., Breit, G.N., Clynne, M.A., and Muffler, L.J.P. (2005) Hydrothermal alteration in Maidu Volcano: A shallow fossil acid-sulfate magmatic-hydrothermal system in the Lassen Peak area, California. In H.N. Rhoden, R.C. Steininger, and P.G. Vikre, Eds., Geological Society of Nevada Symposium 2005: Window to the World, Reno, Nevada, May, 2005, p. 295–313.Google Scholar

  • John, D.A., Breit, G.N., Lee, R.G., Dilles, J.H., Muffler, L.P., and Clynne, M.A. (2006) Fossil magmatic-hydrothermal systems in Pleistocene Brokeoff Volcano, Lassen Volcanic National Park, California. American Geophysical Union, Fall Meeting 2006, abstract V53A-1745.Google Scholar

  • John, D.A., Breit, G.N., Lee, R., Dilles, J.H., Calvert, A.T., Muffler, L.J.P., Clynne, M.A., and Rye, R.O. (2009) Pleistocene magmatic-hydrothermal systems in the Lassen region, northeastern California. Geological Society of America Abstracts with Programs, 41(7), 525.Google Scholar

  • Kim, S.-J., Park, S.-D., Jeong, Y.H., and Park, S. (1999) Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution. Journal of the American Ceramic Society, 82, 927–932.Google Scholar

  • Knoll, A.H., Carr, M., Clark, B., Des Marais, D.J., Farmer, J.D., Fischer, W.W., Grotzinger, J.P., McLennan, S.M., Malin, M., Schröder, C., and others. (2005) An astrobiological perspective on Meridiani Planum. Earth and Planetary Science Letters, 240, 179–189.Google Scholar

  • Konhauser, K.O., Phoenix, V.R., Bottrell, S.H., Adams, D.G., and Head, I.M. (2001) Microbial–silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites. Sedimentology, 48, 415–433.Google Scholar

  • Krebs, J.E., Vaishampayan, P., Probst, A.J., Tom, L.M., Marteinsson, V.T., Andersen, G.L., and Venkateswaran, K. (2014) Microbial community structures of novel Icelandic hot spring systems revealed by PhyloChip G3 analysis. Astrobiology,14, 229–240.Google Scholar

  • Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., and IUGS Subcommission on the Systematics of Igneous Rocks (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. Journal of Petrology, 27, 745–750.Google Scholar

  • Lynne, B.Y., Campbell, K.A., Perry, R.S., Browne, P.R.L., and Moore, J.N. (2006) Acceleration of sinter diagenesis in an active fumarole, Taupo volcanic zone, New Zealand. Geology, 34, 749–752.Google Scholar

  • Lynne, B.Y., Campbell, K.A., James, B.J., Browne, P.R.L., and Moore, J. (2007) Tracking crystallinity in siliceous hot-spring deposits. American Journal of Science, 307, 612–641.Google Scholar

  • McHenry, L.J. (2009) Element mobility during zeolitic and argillic alteration of volcanic ash in a closed-basin lacustrine environment: Case study Olduvai Gorge, Tanzania. Chemical Geology, 265, 540–552.Google Scholar

  • McHenry, L.J., Chevrier, V., and Schröder, C. (2011) Jarosite in a Pleistocene East African saline-alkaline paleolacustrine deposit: Implications for Mars aqueous geochemistry. Journal of Geophysical Research, 116, E04002.Google Scholar

  • McSween, H.Y., Ruff, S.W., Morris, R.V., Bell, J.F. III, Herkenhoff, K., Gellert, R., Stockstill, K.R., Tornabene, L.L., Squyres, S.W., Crisp, J.A., Christensen, P.R., McCoy, T.J., Mittlefehldt, D.W., and Schmidt, M. (2006) Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. Journal of Geophysical Research, 101,E09S91.Google Scholar

  • Ming, D.W., Gellert, R., Morris, R.V., Arvidson, R.E., Brückner, J., Clark, B.C., Cohen, B.A., d’Uston, C., Economou, T., Fleischer, I., and others. (2008) Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. Journal of Geophysical Research,113, E12S39.Google Scholar

  • Morris, R.V., Klingelhöfer, G., Schröder, C., Fleischer, I., Ming, D.W., Yen, A.S., Gellert, R., Arvidson, R.E., Rodionov, D.S., Crumpler, L.S., and others. (2008) Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. Journal of Geophysical Research, 113, E12S42.Google Scholar

  • Morris, R.V., Vaniman, D.T., Blake, D.F., Gellert, R., Chipera, S.J., Rampe, E.B., Ming, D.W., Morrison, S.M., Downs, R.T., Treiman, A.H., and others. (2016) Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater. Proceedings of the National Academy of Sciences, 113, 7071–7076.Google Scholar

  • Muffler, L.J.P., and Clynne, M.A. (2015) Geologic field-trip guide to Lassen Volcanic National Park and vicinity, California. U.S. Geological Survey Scientific Investigations Report 2015–5067.Google Scholar

  • Muffler, L.J.P., Nehring, N.L., Truesdell, A.H., Janik, C.J., Clynne, M.A., and Thompson, J.M. (1982) The Lassen Geothermal System. Proceedings of the Pacific Geothermal Conference 1982. University of Auckland, New Zealand, pp. 349–356.Google Scholar

  • Nam, H.-D., Lee, B.-H., Kim, S.-J., Jung, C.-H., Lee, J.-H., and Park, S. (1998) Precipitation of ultrafine crystalline TiO2 powders from aqueous TiCl4 solution by precipitation. Japanese Journal of Applied Physics, 37, 4603–4608.Google Scholar

  • Pallister, J.S., Thornber, C.R., Cashman, K.V., Clynne, M.A., Lowers, H.A., Mandeville, C.W., Brownfield, I.K., and Meeker, G.P. (2008) Petrology of the 2004–2006 Mount St. Helens lava dome—implications for magmatic plumbing and eruption triggering. In D.R. Sherrod, W.E. Scott, and P.H. Stauffer, Eds., A volcano rekindled: the renewed eruption of Mount St. Helens 2004–2006, chap. 30, p. 647–702. U.S. Geological Survey Professional Paper 1750.Google Scholar

  • Phillips, R.J., Zuber, M.T., Solomon, S.C., Golombek, M.P., Jakosky, B.M., Banerdt, W.B., Smith, D.E., Williams, R.M.E., Hynek, B.M., Aharonson, O., and Hauck, S.A. (2001) Ancient geodynamics and global-scale hydrology of Mars. Science, 291, 2587–2591.Google Scholar

  • Preston, L.J., Benedix, G.K., Genge, M.J., and Sephton, M.A. (2008) A multidisciplinary study of silica sinter deposits with applications to silica identification and detection of fossil life on Mars. Icarus, 198, 331–350.Google Scholar

  • Robbins, S.J., Di Achille, G., and Hynek, B.M. (2011) The volcanic history of Mars: High-resolution crater-based studies of the calderas of twenty volcanoes. Icarus, 211, 1179–1203.Google Scholar

  • Rodgers, K.A., Cook, K.L., Browne, P.R.L., and Campbell, K.A. (2002) The mineralogy, texture and significance of silica derived from alteration by steam condensate in three New Zealand geothermal fields. Clay Minerals, 37, 299–322.Google Scholar

  • Rodgers, K.A., Browne, P.R.L., Buddle, T.F., Cook, K.L., Greatrex, R.A., Hampton, W.A., Herdianita, N.R., Holland, G.R., Lynne, B.Y., Martin, R., and others. (2004) Silica phases in sinters and residues from geothermal fields of New Zealand. Earth Science Reviews, 66, 1–61.Google Scholar

  • Ruff, S.W., and Farmer, J.D. (2016). Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nature Communications, 7, 13554. .CrossrefGoogle Scholar

  • Ruff, S.W., Farmer, J.D., Calvin, W.M., Herkenhoff, K.E., Johnson, J.R., Morris, R.V., Rice, M.S., Arvidson, R.E., Bell, J.F. III, Christensen, P.R., and Squyres, S. W. (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research, 116, E00F23.Google Scholar

  • Schmidt, M.E., Ruff, S.W., McCoy, T.J., Farrand, W.H., Johnson, J.R., Gellert, R., Ming, D.W., Morris, R.V., Cabrol,N., Lewis, K.W., and Schroeder, C. (2008) Hydrothermal origin of halogens at Home Plate, Gusev Crater. Journal of Geophysical Research, 113, E06S12.Google Scholar

  • Schmidt, M.E., Farrand, W.H., Johnson, J.R., Schröder, C., Hurowitz, J.A., McCoy, T.J., Ruff, S.W., Arvidson, R.E., Des Marais, D.J., Lewis, K.W., and others. (2009) Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration. Earth and Planetary Science Letters, 281, 258–266.Google Scholar

  • Schulze-Makuch, D., Dohm, J.M., Fan, C., Fairén, A.G., Rodriguez, J.A.P., Baker, V.R., and Fink, W. (2007) Exploration of hydrothermal targets on Mars. Icarus, 189, 308–324.Google Scholar

  • Siering, P., Clarke, J.M., and Wilson, M.S. (2006) Geochemical and biological diversity of acidic, hot springs in Lassen Volcanic National Park. Geomicrobiology, 23, 129–141.Google Scholar

  • Spencer, R.J. (2000). Sulfate minerals in evaporite deposits. Reviews in Mineralogy and Geochemistry, 40, 173–192.Google Scholar

  • Squyres, S.W., Aharonson, O., Clark, B.C., Cohen, B.A., Crumpler, L., de Souza, P.A., Farrand, W.H., Gellert, R., Grant, J., Grotzinger, J.P., and others. (2007) Pyroclastic activity at Home Plate in Gusev Crater, Mars. Science, 316, 738–742.Google Scholar

  • Squyres, S.W., Arvidson, R.E., Ruff, S., Gellert, R., Morris, R.V., Ming, D.W., Crumpler, L., Farmer, J.D., Des Marais, D.J., and Yen, A. (2008) Detection of silica-rich deposits on Mars. Science, 320, 1063–1067.Google Scholar

  • Summa, L.L., and Verosub, K.L. (1992) Trace element mobility during early diagenesis of volcanic ash: applications to stratigraphic correlation. Quaternary International, 13-14, 149–157.Google Scholar

  • Thompson, J.M. (1985) Chemistry of thermal and nonthermal springs in the vicinity of Lassen Volcanic National Park. Journal of Volcanology Geothermal Research, 25, 81–104.Google Scholar

  • Walter, M.R., and Des Marais, D.J. (1993) Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars. Icarus, 101, 129–143.Google Scholar

  • Wang, A., Bell, J.F. III, Li, R., Johnson, J.R., Farrand, W.H., Cloutis, E.A., Arvidson, R.E., Crumpler, L., Squyres, S.W., and McLennan, S.M. (2008) Light-toned salty soils and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills. Journal of Geophysical Research, 113, E12S40.Google Scholar

  • White, D.E., Muffler, L.J.P., and Truesdell, A.H. (1971) Vapor-dominated hydrothermal systems compared with hot-water systems. Economic Geology, 66, 75–97.Google Scholar

  • Yen, A.S., Morris, R.V., Clark, B.C., Gellert, R., Knudson, A.T., Squyres, S., Mittlefehldt, D.W., Ming, D.W., Arvidson, R., McCoy, T., and others. (2008) Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils. Journal of Geophysical Research, 113, E06S10.Google Scholar


Present address: Geology Department, Western Washington University, 516 High Street, Bellingham, Washington 98225, U.S.A.

Erhalten: 08.04.2016

Angenommen: 22.03.2017

Online erschienen: 17.07.2017

Erschienen im Druck: 26.07.2017

Quellenangabe: American Mineralogist, Band 102, Heft 7, Seiten 1418–1434, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5839.

Zitat exportieren

© 2017 by Walter de Gruyter Berlin/Boston.

Kommentare (0)