Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 7

Issues

Formation of basic lead phases during fire-setting and other natural and man-made processes

Maximilian F. Keim
  • Corresponding author
  • Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich Geowissenschaften, Universität Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernd Gassmann / Gregor Markl
  • Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich Geowissenschaften, Universität Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-17 | DOI: https://doi.org/10.2138/am-2017-5931

Abstract

Basic lead phases are relatively rare compounds occurring in various natural and anthropogenically influenced environments, most importantly those related to fire-setting (FS). The medieval FS mining method and subsequent alteration processes lead to a complex set of basic lead phases including caledonite, hydrocerussite, leadhillite, and lanarkite. Although basic lead phases have been known for over 100 years, their mode of formation and stability relations are only insufficiently known. In this study, the formation of this interesting phase assemblage is described in detail including textures, genesis, and conditions of formation. Samples include ones collected in a medieval mining district in SW-Germany and ones that underwent short-term (50 days) experiments mimicking FS and subsequent mine dump processes. The mode of occurrence and the stability relation of basic lead phases formed during FS is discussed using thermodynamic models that are adapted to also explain their occurrence in other anthropogenic and in natural environments.

Textures indicate a three step development of the FS assemblage starting with formation of cerussite during supergene weathering of primary galena prior to FS. This is followed by the decarbonization of the supergene cerussite during FS leading to the formation of lead oxides. Finally, the newly formed lead oxides were hydrated by rain and soil water in the mine dumps producing basic lead phases. Chemical composition of partially produced melt indicates that FS temperatures of up to 950 °C were reached in rare cases, whereas the lack of melt phase and predominance of litharge and lead oxycarbonates in most other samples implies that temperatures in most cases do not exceed 540 °C. Calculated stability diagrams reveal that most basic lead phases are stable at moderate to high pH and low PCO2. Thermodynamic models quantitatively explain their formation in the medieval mine dumps by the reaction of the lead oxides with a weathering fluid that increases pH and consumes CO2 that favors the precipitation of basic lead phases. This also explains the occurrence of basic lead phases in other anthropogenic environments like slag dumps, lead contaminated soils or in contact to concrete, where the reaction of a fluid with portlandite produces high pH and low PCO2-environments. One possible explanation for the rare formation of basic lead minerals in natural oxidation zones in the absence of lead oxides is the alteration of primary galena under elevated temperatures, since the stability fields of the basic lead phases hydrocerussite and lanarkite are enlarged under elevated temperatures.

The short-term experiments show that the precipitation of basic lead phases is almost independent of the external fluid from which they precipitate. Hence, their stability is controlled by microenvironments formed at the mineral-water interface. Consequently, no closed systems in terms of CO2 or external high pH-fluids are needed to stabilize basic lead phases in contact with lead oxides. Analyses of the experimental fluid phase show that the solubility of lead in environments, where lead oxides predominate, is mainly controlled by the basic lead phase hydrocerussite. The present study can be used to quantify the formation of basic lead phases at lead contaminated sites or in natural environments. The observations on the natural samples and the experiments show that in specific rock types, like the medieval FS ones, basic lead phases control the availability of the toxic element lead better than anglesite or cerussite over a wide pH-range. In addition, the described FS phase assemblage can help mining archeologists to understand the details of the FS method even without mining traces and provide constraints on temperatures reached during this process.

Keywords: Basic lead phases; fire-setting; stability relation; leadhillite; lanarkite; hydrocerussite; caledonite

References cited

  • Abdul-Samad, F.A., Thomas, J.H., Williams, P.A., Bideaux, R.A., and Symes, R.F. (1982a) Mode of Formation of some rare copper (II) and lead (II) minerals from aqueous solution with particular reference to deposits at Tiger, Arizona. Transition Metal Chemistry, 7, 32–37.Google Scholar

  • Abdul-Samad, F.A., Thomas, J.H., Williams, P.A., and Symes, R.F. (1982b) Chemistry of formation of lanarkite. Pb2OSO4. Mineralogical Magazine, 46, 499–501.Google Scholar

  • Agricola, G. (1556) De re metallica libri XII, 931 p. Deutscher Verlag der Wissenschaften, Berlin (in German).Google Scholar

  • Anserment, S. (2012) Mines et minéraux du Valais, II. Anniviers et Tourtemagne, 374 p. Rossolis, Bussigny (in French).Google Scholar

  • Armstrong, J.T. (1991) Quantitative elemental analysis of individual micro particles with electron beam instruments. In K.F.J. Heinrich and D.E. Newbury, Eds., Electron Probe Quantitation, p. 261–315. Springer, New York.Google Scholar

  • Asselborn, E. (2012) Minéralogie de la France, 241 p. Teammedia GmbH, Grünewald (in French).Google Scholar

  • Berthold, C., Bjeoumikhov, A., and Brügemann, L. (2009) Fast XRD2 microdiffraction with focusing X-ray microlenses. Particle & Particle Systems Characterization, 26, 107–111.Google Scholar

  • Bethke, C.M., and Yeakel, S. (2015) GWB Essentials Guide. Aqueous Solutions, 149 p. LLC Champaign, Illinois.Google Scholar

  • Bideaux, R.A. (1980) Famous mineral localities: Tiger, Arizona. Mineralogical Record, 11, 155–181.Google Scholar

  • Blanc, P., Lassin, A., Piantone, P., Azaroual, M., Jacquemet, N., Fabbri, A., and Gaucher, E.C. (2012) Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Applied Geochemistry, 27, 2107–2116.Google Scholar

  • Boni, M., Terracciano, R., Evans, N.J., Laukamp, C., Schneider, J., and Bechstädt, T. (2007) Genesis of vanadium ores in the Otavi Mountainland, Namibia. Economic Geology, 102, 441–469.Google Scholar

  • Bowell, J.R., and Clifford, J.H. (2014) Leadhillite Tsumeb, Namibia. Rocks and Minerals, 89, 354–362.Google Scholar

  • Bucher, K., Zhu, Y., and Stober, I. (2009) Groundwater in fractured crystalline rocks, the Clara mine, Black Forest (Germany). International Journal of Earth Sciences, 98, 1727–1739.Google Scholar

  • Ciomartan, D.A., Clark, R.J.H., McDonald, L.J., and Odlyha, M. (1996) Studies on the thermal decomposition of basic lead (II) carbonate by Fourier-transform Raman spectroscopy, X-ray diffraction and thermal analysis. Journal of the Chemical Society, 3639–3645.Google Scholar

  • Cooper, M.P., and Stanley, C. (1997) Die Mineralien der Caldbeck Fells, Cumberland, England. Lapis, 22, 13–34 (in German).Google Scholar

  • Craddock, P.T. (1992) A short history of fire setting. Endeavour, 16, 145–150.Google Scholar

  • Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, 3–13.Google Scholar

  • Essington, M.E., Foss, J.E., and Roh, Y. (2004) The soil mineralogy of lead at Horace’s Villa. Soil Science Society of America, 68, 979–993.Google Scholar

  • Ettler, V., and Johan, Z. (2014) 12years of leaching of contaminants from Pb smelter slags: Geochemical/mineralogical controls and slag recycling potential. Applied Geochemistry, 40, 97–103.Google Scholar

  • Ettler, V., Legendre, O., Bodénan, F., and Touray, J.C. (2001) Primary phases and natural weathering of old lead–zinc pyrometallurgical slag from Příbram, Czech Republic. The Canadian Mineralogist, 39, 873–888.Google Scholar

  • Ettler, V., Johan, Z., Baronnet, A., Jankovský, F., Gilles, C., Mihaljevič, M., Sebek, O., Strnad, L., and Bezdicka, P. (2005) Mineralogy of air-pollution-control residues from a secondary lead smelter: environmental implications. Environmental Science & Technology, 39, 9309–9316.Google Scholar

  • Ettler, V., Červinka, R., and Johan, Z. (2009a) Mineralogy of medieval slags from lead and silver smelting (Bohutín, Příbram district, Czech Republic): Towards estimation of hystorical smelting conditions. Archometry, 51, 987–1007.Google Scholar

  • Ettler, V., Johan, Z., Kříbek, B., Šebek, O., and Mihaljevič, M. (2009b) Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia. Applied Geochemistry, 24, 1–15.Google Scholar

  • Gavrichev, K., Bolshakov, A., Kondakov, D., Khoroshilov, A., and Denisov, S. (2008) Thermal transformations of lead oxides. Journal of Thermal Analysis and Calorimetry, 92, 857–863.Google Scholar

  • Geyer, O.F., and Gwinner, M.P. (2011) Geologie von Baden Württemberg, 627 p. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart (in German).Google Scholar

  • Gilg, H.A., Hochleitner, R., Keller, P., and Struck, U. (2003) A fluid inclusion and stable isotope study of secondary oxidation minerals from the Tsumeb Cu-Pb-Zn deposit, Namibia: Proceedings ECROFI XI, Budapest, Hungary, June 5-7 (2003) Acta Mineralogica-Petrographica, Abstract Series, 78–79.Google Scholar

  • Graf, H.W. (1991) Die Grube Neue Hoffnung bei Bleialf/Eifel. Lapis, 16, 13–18 (in German).Google Scholar

  • Haupt, G. (1884) Die Stollenanlagen; Leitfaden für Bergleute und Tunnelbauer, 258 p. Julius Springer, Berlin (in German).Google Scholar

  • Ingwersen, G. (1990) Die sekundären Mineralbildungen der Pb-Zn-Cu-Lagerstätte Tsumeb. Namibia (Physikalisch-chemische Modelle), 233 p. Ph.D. thesis, University of Stuttgart, Stuttgart (in German).Google Scholar

  • Jak, E., Hayes, P.C., Degterov, S., Pelton, A.D., and Wu, P. (1997) Thermodynamic optimization of the systems PbO-SiO2, PbO-ZnO, ZnO-SiO2 and PbO-ZnO- SiO2. Metallurgical and Materials Transactions B, 28, 1011–1018.Google Scholar

  • Karup-M⊘ller, S. (1975) On the occurrence of the native lead, litharge, hydrocerussite and plattnerite within the Ilímaussaq alkaline intrusion in South Greenland. Neues Jahrbuch für Mineralogie, 37, 230–241.Google Scholar

  • Keim, M.F., and Markl, G. (2015) Weathering of galena: Mineralogical processes, hydrogeochemical fluid path modeling and estimation of the growth rate of pyromorphite. American Mineralogist, 100, 1584–1594.Google Scholar

  • Kirchheimer, F. (1976) Bericht über Spuren römerzeitlichen Bergbaus in Baden-Württemberg. Der Aufschluss, 27, 361–371 (in German).Google Scholar

  • Klockenkämper, R., (1996) Total-reflection X-Ray Fluorescence Analysis, 245 p. Wiley.Google Scholar

  • Kolitsch, U. (1997) Neufunde von Mineralen aus einigen Vorkommen der Vogesen, Frankreich: Triembach, Bluttenberg und Val d’Ajol. Der Aufschluss, 48, 65–91 (in German).Google Scholar

  • Kolitsch, U. Eine durch Betoneinwirkung entstandene Paragenese von Blei-Verbindungen aus der Grube Clara im mittleren Schwarzwald. Der Erzgräber, 14, 48–53 (in German).Google Scholar

  • Kolitsch, U., and Tillmanns, E. (2003) The crystal structure of anthropogenic Pb2(OH)3 (NO3) and a review of Pb-(O. OH) clusters and lead nitrates. Mineralogical Magazine, 67, 79–93.Google Scholar

  • Lee, D. (2007) Formation of leadhillite and calcium lead silicate hydrate (C-Pb- S-H) in the solidification/stabilization of lead contaminants. Chemosphere, 66, 1727–1733.Google Scholar

  • LGRB (2006) BW GÜK300: Geologische Übersichtskarte 1:300000 Ref. 92: Landesgeologie, Regierungspräsidium, Freiburg (in German).Google Scholar

  • Li, Y., Zhu, Y., Zhao, S., and Liu, X. (2015) The weathering and transformation process of lead in China’s shooting ranges. Environmental Science: Processes & Impacts, 17, 1620–1633.Google Scholar

  • Lin, Z. (1996) Secondary mineral phases of metallic lead in soils of shooting ranges from Örebro County, Sweden. Environmental Geology, 27, 370–375.Google Scholar

  • Lin, Z., Comet, B., Qvarfort, U., and Herbert, R. (1995) The chemical and mineralogical behaviour of Pb in shooting range soils from central Sweden. Environmental Pollution, 89, 303–309.Google Scholar

  • Livingstone, A. (1993) Origin of the leadhillite polymorphs. Journal of the Russell Society, 5, 11–14.Google Scholar

  • Markl, G. (1991) Neufunde von der Grube Erzengel Gabriel im Schierengrund, oberes Einbachtal bei Hausach, Mittlerer Schwarzwald. Der Aufschluss, 5, 44–46 (in German).Google Scholar

  • Markl, G. (2015) Schwarzwald, Lagerstätten und Mineralien aus vier Jahrhunderten, Band 1 Nordschwarzwald und Grube Clara, 672 p. Bode, Lauenstein (in German).Google Scholar

  • Ma, L.Q., Hardison, D.W. Jr., Harris, W.G., Cao, X., and Zhou, Q. (2007) Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges. Water, Air, and Soil Pollution, 178, 297–307.Google Scholar

  • Mercy, M.A., Rock, P.A., Casey, W.H., and Mokarram, M.M. (1998) Gibbs energies of formation for hydrocerussite [Pb(OH)2·(PbCO3)2(s)] and hydrozincite {[Zn(OH)2]3·(ZnCO3)2(s)} at 298 K and 1 bar from electrochemical cell measurements. American Mineralogist, 83, 739–745.Google Scholar

  • Metz, R., Richter, M., and Schürenberg. H. (1957) Die Blei-Zink-Erzgänge des Schwarzwaldes, 277 p. Beihefte zum Geologischen Jahrbuch (29), Hanover (in German).Google Scholar

  • Négrel, P., and Roy, S. (1998) Chemistry of rainwater in the Massif Central (France): a strontium isotope and major element study. Applied Geochemistry,13, 941–952.Google Scholar

  • Parkhurst, D.L., and Appelo, C.A.J. (1999) User’s guide to PHREEQC (ver. 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report, 99–4259.Google Scholar

  • Perry, D.L., and Wilkinson, T.J. (2007) Synthesis of high-purity α- and β-PbO and possible applications to synthesis and processing of other lead oxide materials. Applied Physics A, 89, 77–80.Google Scholar

  • Pring, A., Birch, W.D., and Reller, A. (1990) An occurence of lead oxycarbonate (PbCO3·PbO) as a mine fire product at Broken Hill, New South Wales. Mineralogical Magazine, 54, 647–648.Google Scholar

  • Sajadi, S.A. (2011) A comparative investigation of lead sulfate and lead oxide sulfate study of morphology and thermal decomposition. American Journal of Analytical Chemistry, 2, 206–211.Google Scholar

  • Schlomann, C., and Steen, H. (1990) Neue Mineralfunde aus dem Bergbaugebiet von Badenweiler im Südschwarzwald. Lapis, 15, 13–20 (in German).Google Scholar

  • Schnorrer-Köhler, G. (1987) Die Minerale in den Schlacken des Harzes. Der Aufschluss. 38, 231–246 (in German).Google Scholar

  • Schnorrer-Köhler, (1988) Mineralogische Notizen IV. Der Aufschluss, 39, 153–168 (in German).Google Scholar

  • Schnorrer-Köhler, G., Standfuss, K., Standfuss, L. (1982) Neue Schlackenminerale aus Laurion. Der Aufschluss, 33, 459–462 (in German).Google Scholar

  • Skinner, B.J., and McBriab, E.M. (1958) Minium from Broken Hill, New South Wales. Mineralogical Magazine, 31, 947–950.Google Scholar

  • Smart, R.M., and Glasser, F.P. (1974) Compound formation and phase equilibria in the system PbO-SiO2. Journal of the American Ceramic Society, 57, 378–382.Google Scholar

  • Stalder, H.A., Wagner, A., Graeser, S., and Stuker, P. (1998) Mineralienlexikon der Schweiz, 608 p. Wepf, Basel (in German).Google Scholar

  • Temple, A.K. (1956) The Leadhills-Wanlockhead Lead and Zinc Deposits. Transactions of the Royal Society of Edinburgh, 63, 85–113.Google Scholar

  • Treiman, A.H. (1999) Bad water: Origin of phoenicochroite-lanarkite solid solution, Pb2O (CrO4SO4), in Martian Meteorite EETA79001. Lunar and Planetary Science Conference, 30, 1124.Google Scholar

  • Walenta, K. (1991) Neufunde aus dem Schwarzwald; 4. Folge. Lapis, 16, 19–24 (in German).Google Scholar

  • Willies, L., and Weisgerber, G. (2000) The use of fire in prehistoric and ancient mining-firesetting. Paléorient, 26, 131–149.Google Scholar

  • Wittern, A. (1988) Eine typische Mineralparagenese durch Feuersetzen. Der Aufschluss, 39, 317–318 (in German).Google Scholar

  • Wittern, A. (1994) Sekundärmineralien durch Feuersetzen in Oberschulenberg. Bönkhausen. Bleialf und Badenweiler. Der Aufschluss, 45, 36–42 (in German).Google Scholar

  • Wobrauschek, P. (2007) Total reflection X-ray fluorescence analysis—a review. X-ray Spectrometry, 36, 289–300.Google Scholar

  • Yamaguchi, J., Sawada, Y., Sakurai, O., Uematsu, K., Mizutani, N., and Kato, M. (1980) Thermal decomposition of cerussite (PbCO3) in carbon dioxide atmosphere (0–50 ATM). Thermochimica Acta, 35, 307–313.Google Scholar

  • Young, B., Hyslop, E., Bridges, T., and Cooper, J. (2005) New records of supergene minerals from the Northern Pennine orefield. Transactions of the Natural History Society of Northumbria, 64, 211–214.Google Scholar

About the article

Received: 2016-08-04

Accepted: 2017-02-26

Published Online: 2017-07-17

Published in Print: 2017-07-26


Citation Information: American Mineralogist, Volume 102, Issue 7, Pages 1482–1500, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5931.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in