Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Putirka, Keith / Swainson, Ian

12 Issues per year


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 7

Issues

Experimental evidence for the survival of augite to transition zone depths, and implications for subduction zone dynamics

Jingui Xu
  • Key Laboratory of High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
  • Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1680 East West Road, POST Building, Honolulu, Hawaii 96822, U.S.A
  • University of Chinese Academy of Sciences, Beijing 100049, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dongzhou Zhang
  • Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1680 East West Road, POST Building, Honolulu, Hawaii 96822, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Przemyslaw Dera
  • Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1680 East West Road, POST Building, Honolulu, Hawaii 96822, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bo Zhang
  • Key Laboratory of High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dawei Fan
  • Key Laboratory of High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-17 | DOI: https://doi.org/10.2138/am-2017-5959

Abstract

(Ca, Mg)-rich clinopyroxenes are abundant in Earth’s upper mantle and subduction zones. Experimental studies on the thermoelastic properties of these minerals at simultaneous high pressure and high temperature are important for constraining of the composition and structure of the Earth. Here, we present a synchrotron-based single-crystal X-ray diffraction study of natural diopside-dominated augite [(Ca0.89Na0.05Mg0.06)(Mg0.74Fe0.11Al0.14Ti0.01)(Si1.88Al0.12) O6.00] at P and T to ~27 GPa and 700 K. The experiment simulates conditions in cold subducting slabs, and results indicate that augite is stable over this pressure and temperature range. A third-order high-temperature Birch-Murnaghan equation was fit with the pressure-volume-temperature data, yielding the following thermoelastic parameters: KT0 = 111(1) GPa, KT0 = 4.1(1), (∂K0/∂T)P = −0.008(5) GPa/K and αT = 4(1)×10−5 K−1 +2(3)×10−8 K−2 T. A strain analysis shows that the compression along the three principal stress directions is highly anisotropic with ε1:ε2:ε3 = 1.98:2.43:1.00. Additionally, high-pressure structural refinements of room-temperature polyhedral geometry, bond lengths and O3-O3-O3 angle were investigated to ~27 GPa at ambient temperature. Pressure dependences of polyhedral volumes and distortion indicate that the substitution of Al3+ for Si4+ significantly changes the compressional behavior of the TO4-tetrahedron in augite. Density calculations of this augite along a subducting slab geotherm suggest that augite as well as other common clinopyroxenes would promote slab stagnations at transition zone depths if they are metastably preserved in significant quantities.

Keywords: Pyroxenes; augite; high pressure and temperature; single-crystal X-ray diffraction; subduction zone

References cited

  • Agrusta, R., Hunen, J., and Goes, S. (2014) The effect of metastable pyroxene on the slab dynamics. Geophysical Research Letters, 41(24), 8800–8808.Google Scholar

  • Akaogi, M., and Akimoto, S.-i. (1977) Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures. Physics of the Earth and Planetary Interiors, 15(1), 90–106.Google Scholar

  • Akashi, A., Nishihara, Y., Takahashi, E., Nakajima, Y., Tange, Y., and Funakoshi, K.i. (2009) Orthoenstatite/clinoenstatite phase transformation in MgSiO3 at high-pressure and high-temperature determined by in situ X-ray diffraction: Implications for nature of the X discontinuity. Journal of Geophysical Research, 114, B04206.Google Scholar

  • Aleksandrov, K., and Rythova, T. (1961) The elastic properties of rock forming minerals, pyroxenes and amphiboles. Bulletin of Academy of Sciences, USSR, Geophysical Series, 871–875.Google Scholar

  • Angel, R.J. (2000) Equations of state. Reviews in Mineralogy and Geochemistry, 41(1), 35–59.Google Scholar

  • Angel, R.J. (2015) Win_Strain Program for Strain Calculations, http://www.rossangel.net.

  • Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie, 229(5), 405–419.Google Scholar

  • Banno, S. (1959) Aegirinaugites from crystalline schists in Sikoku. Journal of Geological Society of Japan, 65, 652–657.Google Scholar

  • Bina, C.R. (2013) Mineralogy: Garnet goes hungry. Nature Geoscience, 6(5), 335–336.Google Scholar

  • Bindi, L., Safonov, O.G., Yapaskurt, V.O., Perchuk, L.L., and Menchetti, S. (2003) Letter. Ultrapotassic clinopyroxene from the Kumdy-Kol microdiamond mine, Kokchetav Complex, Kazakhstan: Occurrence, composition and crystal-chemical characterization. American Mineralogist, 88, 464–468.Google Scholar

  • Chopelas, A., and Serghiou, G. (2002) Spectroscopic evidence for pressure-induced phase transitions in diopside. Physics and Chemistry of Minerals, 29(6), 403–408.Google Scholar

  • Clark, J.R., Appleman, D.E., and Papike, J. (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Mineralogical Society of America Special Paper, 2, 31–50.Google Scholar

  • Dera, P., Finkelstein, G.J., Duffy, T.S., Downs, R.T., Meng, Y., Prakapenka, V., and Tkachev, S. (2013a) Metastable high-pressure transformations of ortho-ferrosilite Fs 82. Physics of the Earth and Planetary Interiors, 221, 15–21.Google Scholar

  • Dera, P., Zhuravlev, K., Prakapenka, V., Rivers, M.L., Finkelstein, G.J., Grubor-Urosevic, O., Tschauner, O., Clark, S.M., and Downs, R.T. (2013b) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Pressure Research, 33(3), 466–484.Google Scholar

  • Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339–341.Google Scholar

  • Downs, R.T. (2003) Topology of the pyroxenes as a function of temperature, pressure, and composition as determined from the procrystal electron density. American Mineralogist, 88(4), 556–566.Google Scholar

  • Downs, R.T., and Singh, A.K. (2006) Analysis of deviatoric stress from nonhydrostatic pressure on a single crystal in a diamond anvil cell: The case of monoclinic aegirine, NaFeSi2O6. Journal of Physics and Chemistry of Solids, 67(9-10), 1995–2000.Google Scholar

  • Dziewonski, A.M., and Anderson, D.L. (1981) Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.Google Scholar

  • Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182–9186.Google Scholar

  • Finger, W., and Ohashi, N.Y. (1976) The thermal expansion of diopside to 800 °C and a refinement of the crystal structure at 700 °C. American Mineralogist, 61, 303–310.Google Scholar

  • Finkelstein, G.J., Dera, P.K., Jahn, S., Oganov, A.R., Holl, C.M., Meng, Y., and Duffy, T.S. (2014) Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. American Mineralogist, 99(1), 35–43.Google Scholar

  • Frost, D.J. (2008) The upper mantle and transition zone. Elements, 4(3), 171–176.Google Scholar

  • Fukao, Y., and Obayashi, M. (2013) Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth, 118(11), 5920–5938.Google Scholar

  • Fukao, Y., Widiyantoro, S., and Obayashi, M. (2001) Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39(3), 291–323.Google Scholar

  • Ganguly, J., Freed, A.M., and Saxena, S.K. (2009) Density profiles of oceanic slabs and surrounding mantle: Integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660km discontinuity. Physics of the Earth and Planetary Interiors, 172(3), 257–267.Google Scholar

  • Grand, S.P. (2002) Mantle shear–wave tomography and the fate of subducted slabs. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 360(1800), 2475–2491.Google Scholar

  • Green, D., and Ringwood, A. (1967) The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth and Planetary Science Letters, 3, 151–160.Google Scholar

  • Hazen, R.M., and Finger, L.W. (1977) Compressibility and crystal structure of Angra dos Reis fassaite to 52 kbar. Carnegie Institution of Washington Year Book, 76, 512–515.Google Scholar

  • Hu, Y., Dera, P., and Zhuravlev, K. (2015) Single-crystal diffraction and Raman spectroscopy of hedenbergite up to 33 GPa. Physics and Chemistry of Minerals, 42, 595–608.Google Scholar

  • Ito, E., and Takahashi, E. (1989) Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research: Solid Earth, 94(B8), 10637–10646.Google Scholar

  • Kantor, I., Prakapenka, V., Kantor, A., Dera, P., Kurnosov, A., Sinogeikin, S., Dubrovinskaia, N., and Dubrovinsky, L. (2012) BX90: A new diamond anvil cell design for X-ray diffraction and optical measurements. Review of Scientific Instruments, 83(12), 125102.Google Scholar

  • Kawakatsu, H., and Yoshioka, S. (2011) Metastable olivine wedge and deep dry cold slab beneath southwest Japan. Earth and Planetary Science Letters, 303(1), 1–10.Google Scholar

  • King, S.D., Frost, D.J., and Rubie, D.C. (2015) Why cold slabs stagnate in the transition zone. Geology, 43(3), 231–234.Google Scholar

  • Knight, K.S. (2010) Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite. Physics and Chemistry of Minerals, 37(8), 529–533.Google Scholar

  • Levien, L., and Prewitt, C.T. (1981) High-pressure structural study of diopside. American Mineralogist, 66, 315–323.Google Scholar

  • Li, C., van der Hilst, R.D., Engdahl, E.R., and Burdick, S. (2008) A new global model for P wave speed variations in Earth’s mantle. Geochemistry, Geophysics, Geosystems, 9(5).Google Scholar

  • Liu, L.-G. (1976) The post-spinel phase of forsterite. Nature, 262, 770–772.Google Scholar

  • McCarthy, A.C., Downs, R.T., and Thompson, R.M. (2008a) Compressibility trends of the clinopyroxenes, and in-situ high-pressure single-crystal X-ray diffraction study of jadeite. American Mineralogist, 93(1), 198–209.Google Scholar

  • McCarthy, A.C., Downs, R.T., Thompson, R.M., and Redhammer, G.J. (2008b) In situ high-pressure single-crystal X-ray study of aegirine, NaFe3+Si2O6, and the role of M1 size in clinopyroxene compressibility. American Mineralogist, 93, 1829–1837.Google Scholar

  • Nestola, F., Ballaran, T.B., Liebske, C., Bruno, M., and Tribaudino, M. (2006) High-pressure behaviour along the jadeite NaAlSi2O6-aegirine NaFeSi2O6 solid solution up to 10 GPa. Physics and Chemistry of Minerals, 33(6), 417–425.Google Scholar

  • Nishi, M., Kato, T., Kubo, T., and Kikegawa, T. (2008) Survival of pyropic garnet in subducting plates. Physics of the Earth and Planetary Interiors, 170(3), 274–280.Google Scholar

  • Nishi, M., Kubo, T., and Kato, T. (2009) Metastable transformations of eclogite to garnetite in subducting oceanic crust. Journal of Mineralogical and Petrological Sciences, 104(3), 192–198.Google Scholar

  • Nishi, M., Kubo, T., Ohfuji, H., Kato, T., Nishihara, Y., and Irifune, T. (2013) Slow Si–Al interdiffusion in garnet and stagnation of subducting slabs. Earth and Planetary Science Letters, 361, 44–49.Google Scholar

  • Nishihara, Y., Takahashi, E., Matsukage, K., and Kikegawa, T. (2003) Thermal equation of state of omphacite. American Mineralogist, 88, 80–86.Google Scholar

  • O’Har, M. (1961) Petrology of the Scourie dyke, Sutherland. Mineralogical Magazine, 32, 848–865.Google Scholar

  • Ohashi, Y. (1982) STRAIN, a program to calculate the strain tensor from two sets of unit-cell parameters. In R.M. Hazen and L.W. Finger, Eds., Comparative Crystal Chemistry, Wiley, New York, pp. 92–102.Google Scholar

  • Otten, M.T., and Buseck, P.R. (1987) TEM study of the transformation of augite to sodic pyroxene in eclogitized ferrogabbro. Contributions to Mineralogy and Petrology, 96(4), 529–538.Google Scholar

  • Plonka, A.M., Dera, P., Irmen, P., Rivers, M.L., Ehm, L., and Parise, J.B. (2012) β-diopside, a new ultrahigh-pressure polymorph of CaMgSi2O6 with six-coordinated silicon. Geophysical Research Letters, 39(24).Google Scholar

  • Posner, E.S., Dera, P., Downs, R.T., Lazarz, J.D., and Irmen, P. (2014) High-pressure single-crystal X-ray diffraction study of jadeite and kosmochlor. Physics and Chemistry of Minerals, 41(9), 695–707.Google Scholar

  • Richet, P., Mysen, B.O., and Ingrin, J. (1998) High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Physics and Chemistry of Minerals, 25(6), 401–414.Google Scholar

  • Ringwood, A.E. (1982) Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics, basalt petrogenesis, and crustal evolution. The Journal of Geology, 611–643.Google Scholar

  • Rivers, M., Prakapenka, V.B., Kubo, A., Pullins, C., Holl, C.M., and Jacobsen, S.D. (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Pressure Research, 28(3), 273–292.Google Scholar

  • Robinson, K., Gibbs, G., and Ribbe, P. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567–570.Google Scholar

  • Rooney, T.O., Furman, T., Yirgu, G., and Ayalew, D. (2005) Structure of the Ethiopian lithosphere: Xenolith evidence in the Main Ethiopian Rift. Geochimica et Cosmochimica Acta, 69(15), 3889–3910.Google Scholar

  • Schlinger, C.M., and Veblen, D.R. (1989) Magnetism and transmission electron microscopy of Fe-Ti oxides and pyroxenes in a granulite from Lofoten, Norway. Journal of Geophysical Research: Solid Earth, 94(B10), 14009–14026.Google Scholar

  • Schorn, S., and Diener, J.F. (2016) Details of the gabbro–to–eclogite transition determined from microtextures and calculated chemical potential relationships. Journal of Metamorphic Geology, doi:10.1111/jmg.12220.CrossrefGoogle Scholar

  • Sheldrick, G.M. (2007) A short history of SHELX. Acta Crystallographica, A64(1), 112–122.Google Scholar

  • Shinmei, T., Tomioka, N., Fujino, K., Kuroda, K., and Irifune, T. (1999) In situ X-ray diffraction study of enstatite up to 12 GPa and 1473 K and equations of state. American Mineralogist, 84, 1588–1594.Google Scholar

  • Takeda, H., Yugami, K., Bogard, D., and Miyamoto, M. (1997) Plagioclase-augite-rich gabbro in the Caddo County IAB iron, and the missing basalts associated with iron meteorites. Lunar and Planetary Science Conference, 28, 409.Google Scholar

  • Thompson, R.M., and Downs, R.T. (2008) The crystal structure of diopside at pressure to 10 GPa. American Mineralogist, 93, 177–186.Google Scholar

  • Tracy, R., and Robinson, P. (1977) Zoned titanian augite in alkali olivine basalt from Tahiti and the nature of titanium substitutions in augite. American Mineralogist, 62, 634–645.Google Scholar

  • Tribaudino, M., and Mantovani, L. (2014) Thermal expansion in C2/c pyroxenes: a review and new high-temperature structural data for a pyroxene of composition (Na0.53Ca0.47)(Al0.53Fe0.47)Si2O6 (Jd53Hd47). Mineralogical Magazine, 78(2), 311–324.Google Scholar

  • Tribaudino, M., Nestola, F., Bruno, M., Boffa Ballaran, T., and Liebske, C. (2008) Thermal expansion along the NaAlSi(2)O(6)-NaFe(3+)Si(2)O(6) and NaAlSi(2) O(6)-CaFe(2+)Si(2)O(6) solid solutions. Physics and Chemistry of Minerals, 35(5), 241–248.Google Scholar

  • Ullrich, A., Miletich, R., Balic-Zunic, T., Olsen, L., Nestola, F., Wildner, M., and Ohashi, H. (2010) (Na, Ca)(Ti3+, Mg) Si2O6-clinopyroxenes at high pressure: influence of cation substitution on elastic behavior and phase transition. Physics and Chemistry of Minerals, 37(1), 25–43.Google Scholar

  • Van der Hilst, R., Widiyantoro, S., and Engdahl, E. (1997) Evidence for deep mantle circulation from global tomography. Nature, 386, 578–584.Google Scholar

  • Van Mierlo, W., Langenhorst, F., Frost, D., and Rubie, D. (2013) Stagnation of subducting slabs in the transition zone due to slow diffusion in majoritic garnet. Nature Geoscience, 6(5), 400–403.Google Scholar

  • Xu, J., Kuang, Y., Zhang, B., Liu, Y., Fan, D., Li, X., and Xie, H. (2016) Thermal equation of state of natural tourmaline at high pressure and temperature. Physics and Chemistry of Minerals, 43(5), 315–326.Google Scholar

  • Xu, J., Zhang, D., Fan, D., Downs, R.T., Hu, Y., and Dera, P. (2017) Isosymmetric pressure-induced bonding increase changes compression behavior of clinopyroxenes across jadeite-aegirine solid solution in subduction zones. Journal of Geophysical Research: Solid Earth, 122(1), 142–157.Google Scholar

  • Yang, H., and Prewitt, C.T. (2000) Chain and layer silicates at high temperatures and pressures. Reviews in Mineralogy and Geochemistry, 41(1), 211–255.Google Scholar

  • Zhang, L., Ahsbahs, H., Hafner, S.S., and Kutoglu, A. (1997) Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa. American Mineralogist, 82(3), 245–258.Google Scholar

  • Zhang, L., Stanek, J., Hafner, S., Ahsbahs, H., Grünsteudel, H., and Metge, J. (1999) 57Fe nuclear forward scattering of synchrotron radiation in hedenbergite CaFeSi2O6 at hydrostatic pressures up to 68 GPa. American Mineralogist, 84(3), 447–453.Google Scholar

  • Zhang, J.S., Dera, P., and Bass, J.D. (2012) A new high-pressure phase transition in natural Fe-bearing orthoenstatite. American Mineralogist, 97(7), 1070–1074.Google Scholar

  • Zhang, D., Hu, Y., and Dera, P.K. (2016) Compressional behavior of omphacite to 47 GPa. Physics and Chemistry of Minerals, 43(10), 707–715.Google Scholar

  • Zhang, D., Dera, P.K., Eng, P.J., Stubbs, J.E., Zhang, J.S., Prakapenka, V.B., and Rivers, M.L. (2017) High pressure single crystal diffraction at PX^2. Journal of Visualized Experiments, 119, e54660, .CrossrefGoogle Scholar

  • Zhao, Y., Dreele, R.V., Zhang, J., and Weidner, D. (1998) Thermoelastic equation of state of monoclinic pyroxene: CaMgSi2O6 diopside. The Review of High Pressure Science and Technology, 7, 25–27.Google Scholar

  • Zhao, Y., Von Dreele, R.B., Shankland, T.J., Weidner, D.J., Zhang, J., Wang, Y., and Gasparik, T. (1997) Thermoelastic equation of state of jadeite NaAlSi2O6: An energy-dispersive Reitveld refinement study of low symmetry and multiple phases diffraction. Geophysical Research Letters, 24(1), 5–8.Google Scholar

About the article

Received: 2016-09-16

Accepted: 2017-02-26

Published Online: 2017-07-17

Published in Print: 2017-07-26


Citation Information: American Mineralogist, Volume 102, Issue 7, Pages 1516–1524, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5959.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in