Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 7

Issues

Mineralogical and compositional features of rock fulgurites: A record of lightning effects on granite

Chiara Elmi
  • Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Philadelphia, Pennsylvania 19104-6313, U.S.A.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jiangzhi Chen
  • Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Philadelphia, Pennsylvania 19104-6313, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David Goldsby
  • Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Philadelphia, Pennsylvania 19104-6313, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reto Gieré
  • Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Philadelphia, Pennsylvania 19104-6313, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-17 | DOI: https://doi.org/10.2138/am-2017-5971

Abstract

Fulgurites are a naturally occurring glass formed when sand, rock, or soil is struck by atmospheric electrical discharges (lightning). The aim of this paper is to provide insights into the conditions occurring in rocks during the lightning strike. Rock fulgurites collected from Mt. Mottarone, Baveno (Piedmont, Italy) have been investigated to assess the mineralogical and compositional changes occurring in granite due to a lightning strike. X-ray powder diffraction showed that the samples represent the dominant granitic rock type of the Baveno massif, the so-called “Pink Baveno.” Fulgurite coats the surface of the granite as a brown-black, glassy to very fine-grained porous layer. Powder diffraction data for the fulgurite reveal the presence of cristobalite and quartz crystals in a glass matrix, suggesting that temperature exceeded ~1700 °C at near atmospheric conditions, assuming thermodynamic equilibrium. Electron probe microanalysis of the glass revealed that it is mainly composed of SiO2 and Al2O3 and that it has a porosity of 5–7 area% in the studied zones. The presence of the amorphous phase indicates that the abrupt electrical (Joule) heating of the rock surface yielded high temperatures, producing a thin melt layer on the surface, which then cooled adiabatically. Idealized physical model was developed to simulate the effects of Joule heating and subsequent thermal conduction close to the rock surface during and after a lightning strike. The quantity of organic matter in the glass, obtained via Elemental Analyzer, suggests that rapid quenching of the melt trapped NOx and COx gases produced during heating. Raman spectroscopy revealed the presence of polyaromatic hydrocarbon molecules, which, combined with the Elemental Analyzer data, suggest that organic matter was pyrolyzed at around 300–350 °C and then trapped in the glass matrix of the studied rock fulgurites.

Keywords: Lightning; rock fulgurites; mineralogy; compositional features; physical models

References Cited

  • Adamo, P., Bargagli, R., Giordano, S., Modenesi, P., Monaci, F., Pittao, E., Spagnuolo, V., and Tretiach, M. (2008) Natural and pre-treatments induced variability in the chemical composition and morphology of lichens and mosses selected for active monitoring of airborne elements. Environmental Pollution, 152(1), 11–19.Google Scholar

  • Alajtal, A.I., Edwards, H.G., Elbagerma, M.A., and Scowen, I.J. (2010) The effect of laser wavelength on the Raman Spectra of phenanthrene, chrysene, and tetracene: implications for extra-terrestrial detection of polyaromatic hydrocarbons. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76(1), 1–5.Google Scholar

  • Arias, A., Oddone, M., Bigazzi, G., Di Muro, A., Principe, C., and Norelli, P. (2006) New data for the characterization of Milos obsidians. Journal of Radioanalytical and Nuclear Chemistry, 268(2), 371–386.Google Scholar

  • Boriani, A., Caironi, V., Oddone, M., and Vannucci, R. (1988) Some petrological and geochemical constraints on the genesis of Baveno Mottarone plutonic bodies. Rendiconti della Societá Italiana di Mineralogia e Petrologia, 43(2), 385–394.Google Scholar

  • Boriani, A., Giobbi Origoni, E., Borghi, A., and Caironi, V. (1990) The evolution of the “Serie dei Laghi” (Strona-Ceneri and Scisti dei Laghi): the upper component of the Ivrea-Verbano crustal section; Southern Alps, North Italy and Ticino, Switzerland. Tectonophysics, 182(1), 103–118.Google Scholar

  • Bouška, V., and Feldman, V.I. (1994) Terrestrial and lunar, volcanic and impact glasses, tektites, and fulgurites. In A.S. Marfunin, Ed., Advanced Mineralogy: Volume 1 Composition, Structure, and Properties of Mineral Matter: Concepts, Results, and Problems, p. 258–265. Springer.Google Scholar

  • Bugini, R., Pavese, A., Borroni, S., and Folli, L. (2000) White granites used in Lombard architecture. In V. Fassina, Ed., Proceedings of the 9th International Congress on Deterioration and Conservation of Stone, p. 41–48.Google Scholar

  • Caironi, V. (1985) Characterization of different granitic facies in the Baveno-Mottarone pluton. Rendiconti della Societá Italiana di Mineralogia e Petrologia, 40, 341–352.Google Scholar

  • Carabatos-Nedelec, C. (2001) Raman Spectra of Gases. In I.R. Lewis, and H.G.M. Edwards, Eds., Handbook of Raman Spectroscopy, 28, 423–468. CRC Press.Google Scholar

  • Carter, E.A., Hargreaves, M.D., Kee, T.P., Pasek, M.A., and Edwards, H.G. (2010a) A Raman spectroscopic study of a fulgurite. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 368, 3087–3097.Google Scholar

  • Carter, E.A., Pasek, M.A., Smith, T., Kee, T.P., Hines, P., and Edwards, H.G. (2010b) Rapid Raman mapping of a fulgurite. Analytical and Bioanalytical Chemistry, 397(7), 2647–2658.Google Scholar

  • Christian, H.J., Blakeslee, R.J., Boccippio, D.J., Boeck, W.L., Buechler, D.E., Driscoll, K.T., Goodman, S.J., Hall, J.M., Koshak, W.J., Mach, D.M., and Stewart, M.F. (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research: Atmospheres, 108(D1).Google Scholar

  • Clochiatti, R. (1990) Les fulgurites et roches vitrifiées de l’Etna / Fulgurites and vitreous rocks from Etna: a preliminary petrochemical study. European Journal of Mineralogy, 2(4), 479–494.Google Scholar

  • Cockell, C.S., Olsson-Francis, K., Herrera, A., and Meunier, A. (2009) Alteration textures in terrestrial volcanic glass and the associated bacterial community. Geobiology, 7(1), 50–65.Google Scholar

  • Degen, T., Sadki, M., Bron, E., Konig, U., and Nenert, G. (2014) The HighScore suite. Powder Diffraction, 29(SupplementS2), S13–S18.Google Scholar

  • Dino, G.A., Fornaro, M., and Trentin, A. (2012) Quarry waste: Chances of a possible economic and environmental valorisation of the Montorfano and Baveno granite disposal sites. Journal of Geological Research, 2012, 1–11.Google Scholar

  • Ende, M., Schorr, S., Kloess, G., Franz, A., and Tovar, M. (2012) Shocked quartz in Sahara fulgurite. European Journal of Mineralogy, 24(3), 499–507.Google Scholar

  • Eppelbaum, L., Kutasov, I., and Pilchin, A. (2014) Thermal properties of rocks and density of fluids. In L. Eppelbaum, I. Kutasov, and A. Pilchin, Eds., Applied Geothermics, p. 99–149. Springer-Verlag.Google Scholar

  • Essene, E.J., and Fisher, D.C. (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science, 234, 189–193.Google Scholar

  • Fisher, R.V., and Schmincke, H.-U. (1984) Alteration of volcanic glass. In R.V. Fisher and H.-U. Schmincke, Eds., Pyroclastic Rocks, p. 312–345. Springer.Google Scholar

  • Frederikse, H.P.R. (2004) Section 12: Properties of solids. Thermal conductivity of ceramics and other insulating materials. In D.R. Lide, Ed., Handbook of Chemistry and Physics, 84th ed., p. 12–227. CRC Press.Google Scholar

  • French, B.M., and Koeberl, C. (2010) The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth-Science Reviews, 98(1-2), 123–170.Google Scholar

  • Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D. (2001) A geochemical classification for granitic rocks. Journal of Petrology, 42(11), 2033–2048.Google Scholar

  • Gallitelli, P. (1937) Ricerche petrografiche sul granito di Baveno. Memorie della Societá Toscana di Scienze Naturali, 46, 150–226.Google Scholar

  • Garra, P., Maschowski, C., Liaud, C., Dieterlen, A., Trouve, G., Le Calve, S., Jaffrezo, J.L., Leyssens, G., Schonnenbeck, C., Kohler, S., and Gieré, R. (2015) Fluorescence microscopy analysis of particulate matter from biomass burning: Polyaromatic Hydrocarbons as Main Contributors. Aerosol Science and Technology, 49(11), 1160–1169.Google Scholar

  • Gieré, R., Wimmenauer, W., Muller-Sigmund, H., Wirth, R., Lumpkin, G.R., and Smith, K.L. (2015) Lightning-induced shock lamellae in quartz. American Mineralogist, 100(7), 1645–1648.Google Scholar

  • Grapes, R. (2010) Thermal regimes and effects. In R. Grapes, Ed., Pyrometamorphism, p. 11–44. Springer.Google Scholar

  • Grapes, R.H., and Müller-Sigmund, H. (2009) Lightning-strike fusion of gabbro and formation of magnetite-bearing fulgurite, Cornone di Blumone, Adamello, Western Alps, Italy. Mineralogy and Petrology, 99(1-2), 67–74.Google Scholar

  • Holland, T., and Powell, R. (2001) Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. Journal of Petrology, 42(4), 673–683.Google Scholar

  • Hughes, C.J. (1982) Physical properties and physical chemistry of magmas. In C.J. Hughes, Ed. Igneous Petrology, 7, 147–198. Elsevier.Google Scholar

  • Jager, E., and Faul, H. (1959) Age measurements on some granites and gneisses from the Alps. Geological Society of America Bulletin, 70(12), 1553–1558.Google Scholar

  • Kenkmann, T., Poelchau, M.H., and Wulf, G. (2014) Structural geology of impact craters. Journal of Structural Geology, 62, 156–182.Google Scholar

  • Lay, E.H., Jacobson, A.R., Holzworth, R.H., Rodger, C.J., and Dowden, R.L. (2007) Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network. Journal of Geophysical Research-Atmospheres, 112(D13), D13111–D13120.Google Scholar

  • Martin Crespo, T., Lozano Fernandez, R.P., and Gonzalez Laguna, R. (2009) The fulgurite of Torre de Moncorvo (Portugal): description and analysis of the glass. European Journal of Mineralogy, 21(4), 783–794.Google Scholar

  • Navarro-Gonzalez, R., Mahan, S.A., Singhvi, A.K., Navarro-Aceves, R., Rajot, J.L., McKay, C.P., Coll, P., and Raulin, F. (2007) Paleoecology reconstruction from trapped gases in a fulgurite from the late Pleistocene of the Libyan Desert. Geology, 35(2), 171–174.Google Scholar

  • O’Connor, B.H., and Raven, M.D. (1988) Application of the Rietveld refinement procedure in assaying powdered mixtures. Powder Diffraction, 3(01), 2–6.Google Scholar

  • O’Dwyer, J.J. (1969) Theory of dielectric breakdown in solids. Journal of the Electrochemical Society, 116(2), 239–242.Google Scholar

  • Olhoeft, G.R. (1981) Electrical properties of granite with implications for the lower crust. Journal of Geophysical Research: Solid Earth, 86(B2), 931–936.Google Scholar

  • Olona, J., Pulgar, J., Fernández-Viejo, G., López-Fernández, C., and González-Cortina, J. (2010) Weathering variations in a granitic massif and related geotechnical properties through seismic and electrical resistivity methods. Near Surface Geophysics, 8, 585–599.Google Scholar

  • Pasek, M., and Block, K. (2009) Lightning-induced reduction of phosphorus oxidation state. Nature Geoscience, 2(8), 553–556.Google Scholar

  • Pasek, M.A., and Hurst, M. (2016) A fossilized energy distribution of lightning. Scientific Reports, 6, 30586.Google Scholar

  • Pasek, M.A., Block, K., and Pasek, V. (2012) Fulgurite morphology: a classification scheme and clues to formation. Contributions to Mineralogy and Petrology, 164(3), 477–492.Google Scholar

  • Pouchou, J.-L., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” In K.F.J. Heinrich, and D.E. Newbury, Eds., Electron Probe Quantitation, p. 31–75. Springer.Google Scholar

  • Putnis, A., Hinrichs, R., Putnis, C.V., Golla-Schindler, U., and Collins, L.G. (2007) Hematite in porous red-clouded feldspars: Evidence of large-scale crustal fluid-rock interaction. Lithos, 95(1-2), 10–18.Google Scholar

  • Rakov, V.A. (1999) Lightning makes glass. 29th Annual Conference of the Glass Art Society, p. 45–50, Tampa, Florida.Google Scholar

  • Rivalenti, G., Garuti, G., and Rossi, A. (1975) The origin of the Ivrea-Verbano basic formation (western Italian Alps); whole rock geochemistry. Italian Journal of Geoscience, 94(5), 1149–1186.Google Scholar

  • Rivalenti, G., Rossi, A., Siena, F., and Sinigoi, S. (1984) The layered series of the Ivrea-Verbano igneous complex, western Alps, Italy. Tschermaks mineralogische und petrographische Mitteilungen, 33(2), 77–99.Google Scholar

  • Saikia, B.J., Parthasarathy, G., Sarmah, N.C., and Baruah, G.D. (2008) Fourier-transform infrared spectroscopic characterization of naturally occurring glassy fulgurites. Bulletin of Materials Science, 31(2), 155–158.Google Scholar

  • Sandrone, R., Colombo, A., Fiora, L., Fornaro, M., Lovera, E., Tunesi, A., and Cavallo, A. (2004) Contemporary natural stones from the Italian western Alps. Periodico di Mineralogia, 73, 211–226.Google Scholar

  • Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.Google Scholar

  • Sinigoi, S., Quick, J.E., Demarchi, G., and Klötzli, U.S. (2016) Production of hybrid granitic magma at the advancing front of basaltic underplating: Inferences from the Sesia Magmatic System (south-western Alps, Italy). Lithos, 252–253, 109–122.Google Scholar

  • Socrates, G. (2001) Infrared and Raman characteristic group frequencies: Tables and Charts, 3rd ed. Wiley.Google Scholar

  • Sponholz, B. (2004) Fulgurites as paleoclimatic indicators—the proof of fulgurite fragments in sand samples. In W. Smykatz-Kloss and P. Felix-Henningsen, Eds., Paleoecology of Quaternary Drylands, p. 73–78. Springer.Google Scholar

  • Sponholz, B., Baumhauer, R., and Felix-Henningsen, P. (1993) Fulgurites in the southern Central Sahara, Republic of Niger and their paleoenvironmental significance. The Holocene, 3(2), 97–104.Google Scholar

  • Switzer, G., and Melson, W.G. (1972) Origin and composition of rock fulgurite glass. The Earth Scientist, 9, 47.Google Scholar

  • Uman, M.A. (1964) The peak temperature of lightning. Journal of Atmospheric and Terrestrial Physics, 26(1), 123–128.Google Scholar

  • Uman, M.A. (1969) Lightning. 264 p. McGraw-Hill, New York.Google Scholar

  • Uman, M.A., and Krider, E.P. (1989) Natural and artificially initiated lightning. Science, 246, 457–464.Google Scholar

  • US-NSSL (2017) U.S. National Severe Storms Laboratory, http://www.nssl.noaa.gov/research/lightning/ (accessed February 22, 2017).

  • White, R.H., and Dietenberger, M.A. (2001) Wood products: thermal degradation and fire. In Encyclopedia of Materials: Science and technology, p. 9712–9716. Elsevier.Google Scholar

  • Zingg, A. (1983) The Ivrea and Strona-Ceneri zones (southern Alps, Ticino and N-Italy)—a review. Schweizerische Mineralogische und Petrographische Mitteilungen, 63(2-3), 361–392.Google Scholar

About the article

Received: 2016-10-03

Accepted: 2017-03-14

Published Online: 2017-07-17

Published in Print: 2017-07-26


Citation Information: American Mineralogist, Volume 102, Issue 7, Pages 1470–1481, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5971.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in