Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 7

Issues

Cabvinite, Th2F7(OH)⋅3H2O, the first natural actinide halide

Paolo Orlandi
  • Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristian Biagioni / Federica Zaccarini
Published Online: 2017-07-19 | DOI: https://doi.org/10.2138/am-2017-6013

Abstract

The new mineral species cabvinite, Th2F7(OH)·3H2O (IMA 2016-011), has been discovered in the Mo-Bi ore deposit of Su Seinargiu, Sarroch, Cagliari, Sardinia, Italy. It occurs as white square prismatic crystals, up to 100 µm in length and 40 µm in thickness, associated with brookite and iron oxy-hydroxides in vugs of quartz veins. Electron microprobe analysis gave (mean of five spot analyses, in wt%): ThO2 82.35, F 19.93, H2Ocalc 10.21, sum 112.49, O=F –8.40, total 104.09. On the basis of 2 Th atoms per formula unit, the empirical formula of cabvinite is Th2F6.7(OH)1.3·3H2O. Main diffraction lines in the X-ray powder diffraction pattern are [d (Å) (relative visual intensity) hkl]: 8.02 (ms) 110; 3.975 (s) 121,211; 3.595 (m) 310,130; 2.832 (m) 400,321,231; 2.125 (m) 402; 2.056 (m) 332; and 2.004 (ms) 440,521,251. Cabvinite is tetragonal, space group I4/m, with a = 11.3689(2), c = 6.4175(1) Å, V = 829.47(2) Å3, Z = 4. The crystal structure has been solved and refined to R1 = 0.021 on the basis of 813 reflections with Fo > 4σ(Fo). It consists of Th tricapped trigonal prisms, connected through corner-sharing, giving rise to a framework hosting [001] tunnels. Cabvinite is the first natural actinide halide, and the site of discovery appears to provide a natural laboratory for the study of Th mobility and sequestration.

Keywords: Cabvinite; halide; thorium; fluorine; crystal structure; Su Seinargiu; Sardinia; Italy

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References cited

  • Anderson, B.W., Claringbull, G.F., Davis, R.J., and Hill, D.K. (1961) Ekanite, a new metamict mineral from Ceylon. Nature, 4780, 997.Google Scholar

  • Ansell, V.E., and Chao, G.Y. (1987) Thornasite, a new hydrous sodium thorium silicate from Mont St-Hilaire, Quebec. Canadian Mineralogist, 25, 181–183.Google Scholar

  • Atencio, D., Carvalho, F.M.S., and Matioli, P.A. (2004) Coutinhoite, a new thoriumuranyl silicate hydrate, from Urucum Mine, Galileia, Minas Gerais, Brazil. American Mineralogist, 89, 721–724.Google Scholar

  • Bonaccorsi, E., and Orlandi, P. (2010) Tancaite-(Ce), a new molybdate from Italy. Acta Mineralogica Petrographica Abstract Series. 20th General Meeting of the International Mineralogical Association, 21st–27th August 2010. Budapest, Hungary, 6, 494.Google Scholar

  • Boni, M., Stein, H.J., Zimmerman, A., and Villa, I.M. (2003) Re-Os age for molybdenite from SW Sardinia (Italy): A comparison with 40Ar/39Ar dating of Variscan granitoids. Mineral Exploration and Sustainable Development, Proceedings of the Seventh Biennial SGA Meeting on Mineral Exploration and Sustainable Development, Athens, Greece, 247–250.Google Scholar

  • Bowie, S.H.U. (1957) Summary of progress of the Geological Survey of Great Britain and the Museum of Practical Geology for the year 1956. Atomic Energy Division, Geological Survey of Great Britain, 66–67.Google Scholar

  • Bowie, S.H.U., and Horne, J.E.T. (1953) Cheralite, a new mineral of the monazite group. Mineralogical Magazine, 30, 93–99.Google Scholar

  • Brese, N.E., and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.Google Scholar

  • Bruker AXS (2004) APEX 2. Bruker Advanced X-ray Solutions, Madison, Wisconsin.Google Scholar

  • Caboi, R., Massoli-Novelli, R., and Sanna, G. (1978) La mineralizzazione a molibdenite di P.ta de Su Seinargiu (Sarroch—Sardegna meridionale). Rendiconti della Societá Italiana di Mineralogia e Petrologia, 34, 167–186.Google Scholar

  • Cooper, M.A., Abdu, Y.A., Ball, N.A., Černý, P, Hawthorne, F.C., and Kristiansen, R. (2012) Aspedamite, ideally □12(Fe3+, Fe2+)3Nb4[Th(Nb,Fe3+)12O42] {(H2O),(OH)}12, a new heteropolyniobate mineral species from the Herreb⊘kasa Quarry, Aspedammen, Østfold, Southern Norway: description and crystal structure. Canadian Mineralogist, 50, 793–804.Google Scholar

  • Della Ventura, G., Bonazzi, P., Oberti, R., and Ottolini, L. (2002) Ciprianiite and mottanaite-(Ce), two new minerals of the hellandite group from Latium (Italy). American Mineralogist, 87, 739–744.Google Scholar

  • Dunstan, W. (1904) The occurrence of thorium in Ceylon. Nature, 69, 510–511.Google Scholar

  • Es’kova, E.M., Semenov, E.I., Khomyakov, A.P., Mer’kov, A.N., Lebedeva, S.I., and Dubakina, L.S. (1974) Umbozerite—a new mineral. Doklady Akademii Nauk SSSR, 216, 169–171 (in Russian).Google Scholar

  • Ferraris, G., and Ivaldi, G. (1988) Bond valence vs bond length in OO hydrogen bonds. Acta Crystallographica, B44, 341–344.Google Scholar

  • Gahn, J.G., Berzelius, J., Wallman, C., and Eggertz, H.P. (1817) Examination of some minerals found in the neighbourhood of Fahlun and their situation. Annals of Phylosopky, 9, 452–460.Google Scholar

  • Ghezzo, C., Guasparri, G., Riccobono, F., Sabatini, G., Pretti, S., and Uras, I. (1981) Le mineralizzazioni a molibdeno associate al magmatismo intrusivo ercinico della Sardegna. Rendiconti della Societá Italiana di Mineralogia e Petrologia, 38, 133–145.Google Scholar

  • Gotman, Y.D., and Khapaev, I.A. (1958) Thorutite—a new mineral of the group of titanites of thorium. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 87, 201–202 (in Russian).Google Scholar

  • Hazen, R.M., and Ausubel, J.H. (2016) On the nature and significance of rarity in mineralogy. American Mineralogist, 101, 1245–1251.Google Scholar

  • Hazen, R.M., Ewing, R.C., and Sverjensky, D.A. (2009) Evolution of uranium and thorium minerals. American Mineralogist, 94, 1293–1311.Google Scholar

  • Holland, T.J.B., and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 65–77.Google Scholar

  • Kupriyanova, I.I., Stolyarova, T.I., and Sidorenko, G.A. (1962) A new thorium silicate–thorosteenstrupine. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 91, 325–330 (in Russian).Google Scholar

  • Langmuir, D., and Herman, J.S. (1980) The mobility of thorium in natural waters at low temperatures. Geochimica et Cosmochimica Acta, 44, 1753–1766.Google Scholar

  • Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–HO hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 1047–1059.Google Scholar

  • Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III. Some general applications. Canadian Mineralogist, 17, 71–76.Google Scholar

  • Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. Canadian Mineralogist, 19, 441–450.Google Scholar

  • Oliveira, M.A.S., Gesland, J.-Y., Pimenta, M.A., and Moreira, R.L. (1999) Raman scattering study of the orthorhombic-to-tetragonal phase transition of a Li3ThF7 crystal. Physical Review B, 60, 9983–9989.Google Scholar

  • Orlandi, P., Pasero, M., and Bigi, S. (2010) Sardignaite, a new mineral, the second known bismuth molybdate: description and crystal structure. Mineralogy and Petrology, 100, 17–22.Google Scholar

  • Orlandi, P., Demartin, F., Pasero, M., Leverett, P., Williams, P.A., and Hibbs, D.E. (2011) Gelosaite, BiMo(25x)6+Mo6x5+O7(OH)H2O (0 ≤ x ≤ 0.4), a new mineral from Su Senargiu (CA), Sardinia, Italu, and a second occurrence from Kingsgate, New England, Australia. American Mineralogist, 96, 268–273.Google Scholar

  • Orlandi, P., Biagioni, C., Bindi, L., and Nestola, F. (2014) Ichnusaite, Th(MoO4)2⋅3H2O, the first natural thorium molybdate: occurrence, description, and crystal structure. American Mineralogist, 99, 2089–2094.Google Scholar

  • Orlandi, P., Gelosa, M., Bonacina, E., Caboni, F., Mamberti, M., Tanca, G.A., and Vinci, A. (2015a) Sette nuove specie mineralogiche dalla Sardegna. I minerali della mineralizzazione a molibdeno e bismuto di Su Seinargiu (CA). Rivista Mineralogica Italiana, 39, 84–115.Google Scholar

  • Orlandi, P, Biagioni, C., Pasero, M., Demartin, F, Campostrini, I., and Merlino, S. (2015b) Mambertiite, BiMo2.805+O8(OH), a new mineral from Su Seinargiu, Sardinia, Italy: occurrence, crystal structure, and relationships with gelosaite. European Journal of Mineralogy, 27, 405–415.Google Scholar

  • Orlandi, P., Biagioni, C., Moëlo, Y., Langlade, J., and Faulques, E. (2015c) Suseinargiuite, (Na0.5Bi0.5)MoO4, the Na-Bi analogue of wulfenite, from Su Seinargiu, Sardinia, Italy. European Journal of Mineralogy, 27, 695–699.Google Scholar

  • Orlandi, P., Biagioni, C., Bindi, L., and Merlino, S. (2015d) Nuragheite, Th(MoO4)2⋅H2O, the second natural thorium molybdate and its relationships to ichnusaite and synthetic Th(MoO4)2. American Mineralogist, 100, 267–273.Google Scholar

  • Pabst, A., and Hutton, C.O. (1951) Huttonite, a new monoclinic thorium silicate with an account of its occurrence, analysis, and properties. American Mineralogist, 36, 60–69.Google Scholar

  • Pautov, L.A., Agakhanov, A.A., Sokolova, E.V., and Kabalov, Y.K. (1997) Turkestanite, Th(Ca,Na)2(K1−xx)Si8O20⋅nH2O—a new mineral. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 126, 45–55 (in Russian).Google Scholar

  • Pavlenko, A.S., Orlova, L.P., Akhmanova, M.V., and Tobelko, K.I. (1965) A thorium fluocarbonate, thorbastnaesite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 94, 105–113 (in Russian).Google Scholar

  • Pekov, I.V., Yekimenkova, I.A., and Kononkova, N.N. (1997) Thorosteenstrupine from the Lovozero massif and the isomorphic series steenstrupine—thorosteenstrupine. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 126, 35–44 (in Russian).Google Scholar

  • Perrault, G., and Szymanski, J.T. (1982) Steacyite, a new name, and a re-evalution of the nomenclature of “ekanite”-group minerals. Canadian Mineralogist, 20, 59–63.Google Scholar

  • Piret, P., and Deliens, M. (1987) Les phosphates dďuranyle et dďaluminium de Kobokobo. IX. L’althupite, AlTh(UO2)[(UO2)3O(OH)(PO4)2]2(OH)3⋅15H2O, nouveau minéral; propriétés et structure cristalline. Bulletin de Minéralogie, 110, 65–72.Google Scholar

  • Rouquérol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pericone, N., Ramsay, J.D.F., Sings, K.S.W., and Unger, K.K. (1994) Recommendations for the characterization of porous solids. Pure Applied Chemistry, 66, 1739–1758.Google Scholar

  • Schmidt, R., and Müller, B.G. (1999) Th2F7[AuF4]—dar erste „fluorobasische“ Tetrafluoroaurat(III) im system ThF4/AuF3. Zeitschrift fur anorganische und allgemeine Chemie, 625, 602–604.Google Scholar

  • Schmidt, R., and Müller, B.G. (2004) Einkristalluntersuchungen an Cs[AuF4], Cs[Au2F7] und U2F7[AuF4]. Zeitschrift für anorganische und allgemeine Chemie, 630, 2393–2397.Google Scholar

  • Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.Google Scholar

  • Sheldrick, G.M. (2015) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 3–8.Google Scholar

  • Strunz, H., and Nickel, E.H. (2001) Strunz Mineralogical Tables, 9th ed. E. Schweizerbart Verlag, Stuttgart, 870 p.Google Scholar

  • Underwood, C.C., Mann, M., McMillen, C.D., and Kolis, J.W. (2011) Hydrothermal descriptive chemistry and single crystal structure determination of cesium and rubidium thorium fluoride. Inorganic Chemistry, 50, 11825–11831.Google Scholar

  • Underwood, C.C., McMillen, C.D., and Kolis, J.W. (2012) The crystal structures of CsTh6F25 and NaTh3F13. Journal of Chemical Crystallography, 42, 606–610.Google Scholar

  • van Wambeke, L. (1972) Eylettersite, un noveau phosphate de thorium appartenant à la série de la crandallite. Bulletin de la Société Française de Minéralogie et de Cristallographie, 95, 98–105.Google Scholar

  • Wilson, A.J.C. (1992) International Tables for Crystallography Volume C. Kluwer, Dordrecht.Google Scholar

  • Wojdyr, M. (2010) Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 43, 1126–1128.Google Scholar

  • Wood, S.A., and Ricketts, A. (2000) Allanite-(Ce) from the Eocene Casto granite, Idaho: response to hydrothermal alteration. Canadian Mineralogist, 38, 81–100.Google Scholar

  • Yakovenchuk, V.N., Pakhomovskiy, Y.A., Voloshin, A.V., Bogdanova, A.N., Yamnova, N.A., and Pushcharovskiy, D.Y. (1990) Tuliokite Na6BaTh(CO3)6⋅H2O—a new hydrous carbonate of sodium, barium, and thorium, from alkalic pegmatites of the Khibiny massif (Kola Peninsula). Mineralogiceskij Zhurnal, 12, 74–78 (in Russian).Google Scholar

About the article

Received: 2016-11-11

Accepted: 2017-03-06

Published Online: 2017-07-19

Published in Print: 2017-07-26


Citation Information: American Mineralogist, Volume 102, Issue 7, Pages 1384–1389, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-6013.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in