Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 7

Issues

Addibischoffite, Ca2Al6Al6O20, a new calcium aluminate mineral from the Acfer 214 CH carbonaceous chondrite: A new refractory phase from the solar nebula

Chi Ma
  • Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander N. Krot
  • Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Mānoa, Honolulu, Hawai’i 96822, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kazuhide Nagashima
  • Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Mānoa, Honolulu, Hawai’i 96822, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-17 | DOI: https://doi.org/10.2138/am-2017-6032

Abstract

Addibischoffite (IMA 2015-006), Ca2Al6Al6O20, is a new calcium aluminate mineral that occurs with hibonite, perovskite, kushiroite, Ti-kushiroite, spinel, melilite, anorthite, and FeNi-metal in the core of a Ca-Al-rich inclusion (CAI) in the Acfer 214 CH3 carbonaceous chondrite. The mean chemical composition of type addibischoffite measured by electron probe microanalysis is (wt%)Al2O3 44.63, CaO 15.36, SiO2 14.62, V2O3 10.64, MgO 9.13,Ti2O3 4.70, FeO 0.46 total 99.55, giving rise to an empirical formula of (Ca2.00)(Al2.55Mg1.73V1.083+Ti0.503+Ca0.09Fe0.052+)6.01(Al4.14Si1.86)O20.The general formula is Ca2(Al,Mg,V,Ti)6(Al,Si)6O20. The end-member formula is Ca2Al6Al6O20. Addibischoffite has the P1 aenigmatite structure with a =10.367 Å, b =10.756 Å, c = 8.895 Å, α =106.0°, β = 96.0°, γ =124.7°, V = 739.7 Å3, and Z = 2, as revealed by electron backscatter diffraction. The calculated density using the measured composition is 3.41 g/cm3. Addibischoffite is a new member of the warkite (Ca2Sc6Al6O20) group and a new refractory phase formed in the solar nebula, most likely as a result of crystallization from an 16O-rich Ca, Al-rich melt under high-temperature (~1575 °C) and low-pressure (~10−4 to 10−5 bar) conditions in the CAI-forming region near the protosun, providing a new puzzle piece toward understanding the details of nebular processes. The name is in honor of Addi Bischoff, cosmochemist at University of Münster, Germany, for his many contributions to research on mineralogy of carbonaceous chondrites, including CAIs in CH chondrites.

Keywords: Addibischoffite; Ca2Al6Al6O20; new mineral; warkite group; refractory phase; Ca-Al- rich inclusion; Acfer 214 meteorite; CH3 carbonaceous chondrite

References cited

  • Alexander, C.M.O’D. and Ebel, D.S. (2012) Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteoritics & Planetary Science, 47, 1157–1175.Google Scholar

  • Alexander, C.M.O’D., Grossman, J.N., Ebel, D.S., and Ciesla, F.J. (2008) The formation conditions of chondrules and chondrites. Science, 320, 1617–1619.Google Scholar

  • Armstrong, J.T. (1995) CITZAF: A package of correction programs for the quantitative electron beam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Analysis, 4, 177–200.Google Scholar

  • Balakaeva, G.T., and Aldabergenov, M.K. (2012) The Gibbs function normalized to the total number of electrons. Journal of Materials Science and Engineering B, 2, 394–403.Google Scholar

  • Bonaccorsi, E., Merlino, S., and Pasero, M. (1990) Rhönite: structural and microstructural features, crystal chemistry and polysomatic relationships. European Journal of Mineralogy, 2, 203–218.Google Scholar

  • Inoue, K., and Ikeda, T. (1982) The solid solution state and the crystal structure of calcium ferrite formed in lime-fluxed iron ores. Iron and Steel,15, 126–135 (in Japanese).Google Scholar

  • Kita, N.T., and Ushikubo, T. (2012) Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteoritics & Planetary Science, 47, 1108–1119.Google Scholar

  • Kita, N.T., Yin, Q.-Z., MacPherson, G.J., Ushikubo, T., Jacobsen, B., Nagashima, K., Kurahashi, E., Krot, A.N., and Jacobsen, S.B. (2013) 26Al-26Mg isotope systematics of the first solids in the early solar system. Meteoritics & Planetary Science, 48, 1383–1400.Google Scholar

  • Kööp, L., Nakashima, D., Heck, P.R., Kita, N.T., Tenner, T.J., Krot, A.N., Nagashima, K., Park, C., and Davis, A.M. (2016) New constraints for the relationship between 26Al and oxygen, calcium, and titanium isotopic variation in the early Solar System from a multi-element isotopic study of spinel-hibonite inclusions. Geochimica et Cosmochimica Acta, 184, 151–172.Google Scholar

  • Krot, A.N., and Nagashima, K. (2017) Constraints on mechanisms of chondrule formation from chondrule precursors and chronology of transient heating events in the protoplanetary disk. Geochemical Journal, 51, 45–68.Google Scholar

  • Krot, A.N., Nagashima, K., Van Kooten, E.M.M., and Bizzarro, M. (2017a) High-temperature rims around calcium-aluminum-rich inclusions from the CR, CB and CH carbonaceous chondrites. Geochimica et Cosmochimica Acta, 201, 155–184.Google Scholar

  • Krot, A.N., Nagashima, K., Van Kooten, E.M.M., and Bizzarro, M. (2017b) Calcium-aluminum-rich inclusions recycled during formation of porphyritic chondrules from CH carbonaceous chondrites. Geochimica et Cosmochimica Acta, 201, 185–223.Google Scholar

  • Libourel, G., Krot, A.N., and Tissandier, L. (2006) Role of gas-melt interaction during chondrule formation. Earth and Planetary Science Letters, 251, 232–240.Google Scholar

  • Ma, C. (2015) Nanomineralogy of meteorites by advanced electron microscopy: Discovering new minerals and new materials from the early solar system. Microscopy and Microanalysis, 21 (suppl.3), 2353–2354.Google Scholar

  • Ma, C., and Krot, A.N. (2015) Addibischoffite, IMA 2015-006. CNMNC Newsletter No. 25, June 2015, page 532. Mineralogical Magazine, 79, 529–535.Google Scholar

  • Ma, C., and Rossman, G.R. (2008) Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California. American Mineralogist, 93, 154–157.Google Scholar

  • Ma, C., and Rossman, G.R. (2009) Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. American Mineralogist, 94, 841–844.Google Scholar

  • Ma, C., Beckett, J.R., and Rossman, G.R. (2010) Grossmanite, davisite, and kushiroite: Three newly-approved diopside-group clinopyroxenes in CAIs. 41st Lunar and Planetary Science Conference, Abstract 1494.Google Scholar

  • Ma, C., Kampf, A.R., Connolly, H.C. Jr., Beckett, J.R., Rossman, G.R., Sweeney Smith, S.A., and Schrader, D.L. (2011) Krotite, CaAl2O4, a new refractory mineral from the NWA 1934 meteorite. American Mineralogist, 96, 709–715.Google Scholar

  • Ma, C., Krot, A.N., Beckett, J.R., Nagashima, K, and Tschauner, O. (2015) Discovery of warkite, Ca2Sc6Al6O20, a new Sc-rich ultra-refractory mineral in Murchison and Vigarano. Meteoritics and Planetary Science, 50 (S1), Abstract No. 5025.Google Scholar

  • Ma, C., Krot, A.N., and Nagashima, K. (2016a) Discovery of new mineral addibischoffite, Ca2Al6Al6O20, in a Ca-Al-rich refractory inclusion from the Acfer 214 CH3 meteorite. Meteoritics and Planetary Science, 51 (S1), Abstract No. 6016.Google Scholar

  • Ma, C., Paque, J., and Tschauner, O. (2016b) Discovery of beckettite, Ca2V6Al6O20, a new alteration mineral in a V-rich Ca-Al-rich inclusion from Allende. 47th Lunar and Planetary Science Conference, Abstract 1704.Google Scholar

  • McKeegan, K.D., Kallio, A.P.A., Heber, V.S., Jarzebinski, G., Mao, P.H., Coath, C.D., Kunihiro, T., Wiens, R.C., Nordholt, J.E., Moses, R.W. Jr., and others. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 1528–1532.Google Scholar

  • Tenner, T.J., Nakashima, D., Ushikubo, T., Kita, N.T., and Weisberg, M.K. (2015) Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochimica et Cosmochimica Acta, 148, 228–250.Google Scholar

About the article

Received: 2016-11-28

Accepted: 2017-03-23

Published Online: 2017-07-17

Published in Print: 2017-07-26


Citation Information: American Mineralogist, Volume 102, Issue 7, Pages 1556–1560, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-6032.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in