Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 7


17O NMR evidence of free ionic clusters Mn+ CO32− in silicate glasses: Precursors for carbonate-silicate liquids immiscibility

Yann Morizet
  • Corresponding author
  • Université de Nantes, Nantes Atlantique Universités, Laboratoire de Planétologie et Géodynamique de Nantes (LPG), UMR CNRS 6112, 2 rue de la Houssinière, 44322, NANTES, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pierre Florian
  • CNRS-CEMHTI Conditions Extrêmes et Matériaux: Haute Température et Irradiation, UPR 3079, 1D avenue de la Recherche Scientifique, 45071, Orléans, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Paris
  • Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP32229, 44322 Cedex 3, NANTES, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fabrice Gaillllard
  • CNRS/INSU-Université d’Orléans—BRGM, UMR 7327, Institut des Sciences de la Terre d’Orléans, 1A rue de la Férollerie, 45071, Orléans, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-19 | DOI: https://doi.org/10.2138/am-2017-6133


Carbon dioxide is a ubiquitous component of low-silica melts such as kimberlites or melilitites. It is currently assumed that CO2 molecules dissolving in low-silica melts as carbonate groups (CO32) induce a strong polymerization of the silicate network; however, the exact molecular configuration of this dissolution mechanism is still debated.

Using 17O MAS NMR spectroscopy, we have investigated the carbonate molecular environment in a series of synthesized low-silica (31–41 wt% SiO2), CO2-bearing (from 2.9 to 13.2 wt% CO2) silicate glasses analogous to melilitites and kimberlites. With the selective {13C}-, {27Al}-, and {29Si}-17O J HMQC NMR method, we show that CO2 dissolved in the studied low-silica glasses is totally disconnected from the silicate network, forming free ionic clusters (FIC) Mn+ (CO32) with Mn+, a charge compensating cation.

The Mn+ (CO32) FIC are considered as precursors to immiscibility in between carbonate and silicate liquids. Observed in all studied compositions, we suggest that this immiscibility can be produced from moderately to strongly depolymerized silicate melt compositions.

Keywords: 17O NMR spectroscopy; CO2 dissolution mechanism; free ionic clusters; silicate glasses; immiscibility

References cited

  • Allwardt, J.R., and Stebbins, J.F. (2004) Ca-Mg and K-Mg mixing around non-bridging O atoms in silicate glasses: an investigation using 17O MAS and 3QMAS NMR. American Mineralogist, 89, 777–784.Google Scholar

  • Amoureux, J.P., Trebosc, J., Wiench, J., and Pruski, M. (2007) HMQC and refocused-INEPT experiments involving half-integer quadrupolar nuclei in solids. Journal of Magnetic Resonace, 184, 1–14.Google Scholar

  • Brooker, R.A., and Kjarsgaard, B.A. (2011) Silicate–carbonate liquid immiscibility and phase relations in the system SiO2–Na2O–Al2O3–CaO–CO2 at 0.1–2.5 GPa with applications to carbonatite genesis. Journal of Petrology, 52, 1281–1305.Google Scholar

  • Brooker, R.A., Kohn, S.C., Holloway, J.R., and McMillan, P.F. (2001) Structural controls on the solubility of CO2 in silicate melts. Part II: IR characteristics of carbonate groups in silicate glasses. Chemical Geology, 174, 241–254.Google Scholar

  • Brooker, R.A., Sparks, R.S.J., Kavanagh, J.L., and Field, M. (2011) The volatile content of hypabyssal kimberlite magmas: some constraints from experiments on natural rock compositions. Bulletin of Volcanology, 73, 959–981.Google Scholar

  • Cormier, L., and Cuello, G.J. (2013) Structural investigation of glasses along the MgSiO3-CaSiO3 join: Diffraction studies. Geochimica et Cosmochimica Acta, 122, 498–510.Google Scholar

  • Eggler, D.H. (1978) The effect of CO2 upon partial melting of peridotite in the system Na2O–CaO–Al2O3–MgO–SiO2–CO2 to 35kb, with an analysis of melting in a peridotite-H2O–CO2 system. American Journal of Science, 278, 305–343.Google Scholar

  • Giordano, D., Russell, J.K., and Dingwell, D.B. (2008) Viscosity of magmatic liquids: a model. Earth and Planetary Science Letters, 271, 123–134.Google Scholar

  • Guzmics, T., Zajacz, Z., Mitchell, R.H., Szabo, C., and Wälle, M. (2015) The role of liquid–liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions. Contributions to Mineralogy and Petrology, 169, 17–35.Google Scholar

  • Hung, I., Gan, Z., Gor’kov, P.L., Kaseman, D.C., Sen, S., LaComb, M., and Stebbins, J.F. (2016) Detection of “free” oxide ions in low-silica Ca/Mg silicate glasses: Results from 17O → 29Si HETCOR NMR. Journal of Non-Crystalline Solids, 445-446, 1–6. Keeler, J. (2010) Understanding NMR Spectroscopy, 526 p. Wiley.Google Scholar

  • Keller, J., Zaitsev, A.N., and Wiedenmann, D. (2006) Primary magmas at Oldoinyo Lengai: the role of olivine melilitites. Lithos, 91, 150–172.Google Scholar

  • Kelsey, K.E., Allwardt, J.R., and Stebbins, J.F. (2008) Ca-Mg mixing in aluminosilicate glasses: An investigation using the 17O MAS and 3QMAS and 27Al MAS NMR. Journal of Non-Crystalline Solids, 354, 4644–4653.Google Scholar

  • Kjarsgaard, B.A., Pearson, D.G., Tappe, S., Nowell, G.M., and Dowall, D.P. (2009) Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem. Lithos, 1125, 236–248.Google Scholar

  • Kubicki, J.D., and Stolper, E.M. (1995) Structural roles of CO2 and [CO3]2− in fully polymerized sodium aluminosilicate melts and glasses. Geochimica et Cosmochimica Acta, 59, 683–698.Google Scholar

  • Lee, S.K., and Stebbins, J.F. (2003) Nature of cation mixing and ordering in Na-Ca silicate glasses and melts. Journal of Physical Chemistry B, 107, 3141–3148.Google Scholar

  • Mitchell, R.H. (2005) Carbonatites and carbonatites and carbonatites. Canadian Mineralogist, 43, 2049–2068.Google Scholar

  • Morizet, Y., Brooker, R.A., Iacono-Marziano, G., and Kjarsgaard, B. (2013) Quantification of CO2 dissolved in silicate glasses of various compositions with Micro-Raman spectroscopy. American Mineralogist, 98, 1788–1802.Google Scholar

  • Morizet, Y., Paris, M., Sifré, D., Di Carlo, I., and Gaillard, F. (2017a) The effect of Mg concentration in silicate glasses on CO2 solubility and solution mechanism: Implication for natural magmatic systems. Geochimica et Cosmochimica Acta, 198, 115–130.Google Scholar

  • Morizet, Y., Paris, M., Sifré, D., Di Carlo, I., Ory, S., and Gaillard, F. (2017b) Towards the reconciliation of viscosity change and CO2-induced polymerization in silicate melts. Chemical Geology, , in press.CrossrefGoogle Scholar

  • Moussallam, Y., Morizet, Y., Massuyeau, M., Laumonier, M., and Gaillard, F. (2015) CO2 solubility in kimberlite melts. Chemical Geology, 418, 198–205.Google Scholar

  • Moussallam, Y., Florian, P., Corradini, D., Morizet, Y., Sator, N., Vuilleumier, R., Guillot, B., Iacono-Marziano, G., Schmidt, B.C., and Gaillard, F. (2016) The molecular structure of melts along the carbonatite–kimberlite–basalt compositional joint: CO2 and polymerization. Earth and Planetary Science Letters, 434, 129–140.Google Scholar

  • Mysen, B.O. (2012) Silicate-COH melt and fluid structure, their physicochemical properties, and partitioning of nominally refractory oxides between melts and fluids. Lithos, 148, 228–246.Google Scholar

  • Mysen, B.O., and Virgo, D. (1980) Solubility mechanisms of carbon dioxide in silicate melts; a Raman spectroscopic study. American Mineralogist, 65, 885–899.Google Scholar

  • Mysen, B.O., Eggler, D.H., Setiz, M.G., and Holloway, J.R. (1976) Carbon dioxide in silicate melt and crystals: Part I solubility measurements. American Journal of Science, 276, 455–479.Google Scholar

  • Mysen, B.O., Kumamoto, K., Cody, G.D., and Fogel, M.L. (2011) Solubility and solution mechanisms of C-O-H volatiles in silicate melt with variable redox conditions and melt composition at upper mantle temperatures and pressures. Geochimica et Cosmochimica Acta, 75, 6183–6199.Google Scholar

  • Russell, J.K., Porritt, L.A., Lavallée, Y., and Dingwell, D.B. (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature, 481, 352–356.Google Scholar

  • Sifré, D., Gardès, E., Massuyeau, M., Hashim, L., Hier-Majumder, S., and Gaillard, F. (2014) Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature, 509, 81–87.Google Scholar

  • Stebbins, J.F., Lee, S.K., and Oglesby, J.V. (1999) Al-O-Al oxygen sites in crystalline aluminates and aluminosilicate glasses: High-resolution oxygen-17 NMR results. American Mineralogist, 84, 983–986.Google Scholar

  • Thompson, L.M., and Stebbins, J.F. (2011) Non-bridging oxygen and high-coordinated aluminum in metaluminous and peraluminous calcium and potassium aluminosilicate glasses: High-resolution 17O and 27Al MAS NMR results. American Mineralogist, 96, 841–853.Google Scholar

  • Vuilleumier, R., Seitsonen, A., Sator, N., and Guillot, B. (2014) Structure, equation of state and transport properties of molten calcium carbonate (CaCO3) by atomistic simulations. Geochimica et Cosmochimica Acta, 141, 547–566.Google Scholar

  • Vuilleumier, R., Seitsonen, A., Sator, N., and Guillot, B. (2015) Carbon dioxide in silicate melts at upper mantle conditions: Insights from atomistic simulations. Chemical Geology, 418, 77–88.Google Scholar

  • Xue, X., and Kanzaki, M. (2013) Carbonate speciation in depolymerized silicate melts (glasses): New evidence from ab initio calculations and 13C MAS and static NMR measurements. Mineralogical Magazine, 77, 2533.Google Scholar

About the article

Received: 2017-03-07

Accepted: 2017-04-02

Published Online: 2017-07-19

Published in Print: 2017-07-26

Citation Information: American Mineralogist, Volume 102, Issue 7, Pages 1561–1564, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-6133.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in