Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 9

Issues

Mobilization and agglomeration of uraninite nanoparticles: A nano-mineralogical study of samples from the Matoush Uranium ore deposit

Michael Schindler / Aaron J. Lussier
  • Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacob Bellrose / Sergei Rouvimov
  • Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter C. Burns
  • Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
  • Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Kurt Kyser
  • Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-05 | DOI: https://doi.org/10.2138/am-2017-5984

Abstract

The occurrence of uraninite nanoparticles in the alteration zones of uranium ore deposits suggests potential mobilization of U(IV) under reducing conditions, which is important for understanding the mobility of uranium in contaminated sites and potential repositories for nuclear waste. This study investigates the occurrence of uraninite nanoparticles in the outer alteration zone of the Matoush uranium ore deposit, Quebec, Canada. Selected samples with finely disseminated uraninite from the outer alteration zone of the deposit are examined by X-ray fluorescence spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy on specimens prepared using the focused ion beam milling technique. Uraninite nanoparticles occur as single particles, in clusters, and in larger aggregates in close association with the Cr-rich phases chromceladonite (Cr-rich mica), ideally KMgCr3+(Si4O10)(OH)2, eskolaite, ideally Cr23+O3, bracewellite, Cr3+OOH, and an amorphous Cr-rich oxide matrix as well as with fluorapatite and galena. Nanoparticles on the surface and in the outer rim of single uraninite crystals indicate the growth of larger uraninite crystals via crystallization through particle attachment and Oswald ripening. The flow texture of the uraninite nanoparticles in the amorphous Cr-rich oxide matrix, their aggregation on the surface of nanocrystals of bracewellite, the absence of products of a redox reaction involving U(VI) and Fe(II), and the occurrence of amorphous Fe-depleted alteration layers between uraninite and eskolaite, and uraninite and Cr-rich mica indicate that the uraninite nanoparticles have been mobilized under reducing conditions (leaching of Fe2+ from the alteration layer) at low T (amorphous character of the alteration layer) after the main mineralization event from the center of the mineralization to the outer parts of the Matoush dike complex. These results indicate that fluids can mobilize U(IV) under reducing conditions in the form of uraninite nanoparticles albeit over limited distances. The potential mobilization of these nanoparticles may also explain the occurrence of proximal mineralized zones in U-ore deposits that lack common products resulting from the reduction of U(VI) by Fe2+ (e.g., hematite and other Fe3+-phases).

Keywords: Uraninite nanoparticles; uranium mobilization; uranium ore deposit; natural analog; spent nuclear fuel repository; alteration

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References cited

  • Alexandre, P., Kyser, K., Layton-Matthews, D., Beyer, S., Hiatt, E., and Lafontaine, J. (2015) Formation of the enigmatic Matoush uranium deposit in the Paleoprotozoic Otish Basin, Quebec, Canada. Mineralium Deposita, 50, 825–845.Google Scholar

  • Bargar, J.R., Bernier-Latmani, R., Giammar, D.E., and Tebo, B.M. (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements, 4, 407–412.Google Scholar

  • Baumgartner, J., Dey, A., Bomans, P.H.H., Le Coadou, C., Fratzl, P., Sommerdijk, N., and Faivre, D. (2013) Nucleation and growth of magnetite from solution. Nature Materials, 12, 310–314.Google Scholar

  • Beyer, S., and Kyser, K. (2015) Mineral paragenesis and U-Pb and Pb-Pb geochronology of sample MT0610-DDH10-303.5m, Matoush zone, Otish Mountains, Quebec. Report to Strateco Resources Inc., 1–13.Google Scholar

  • Bots, P., Morris, K., Hibberd, R., Law, G.T., Mosselmans, J.F., Brown, A.P., Doutch, J., Smith, A.J., and Shaw, S. (2014) Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal. Langmuir, 30, 14,396–14,405.Google Scholar

  • Cai, L., Tong, M., Wang, X., and Kim, H. (2014) Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand. Environmental Science Technology, 48, 7323–7332.Google Scholar

  • Cerrato, J.M., Ashner, M.N., Alessi, D.S., Lezama-Pacheco, J.S., Bernier-Latmani, R., Bargar, J.R., and Giammar, D.E. (2013) Relative reactivity of biogenic and chemogenic uraninite and biogenic non crystalline U(IV). Environmental Science Technology, 47, 9756–9763.Google Scholar

  • Choi, C.H., Su, Y.W., and Chang, C.H. (2013) Effects of fluid flow on the growth and assembly of ZnO nanocrystals in a continuous flow microreactor. CrystEngComm, 15, 3326–3333.Google Scholar

  • Cölfen, H., and Antonietti, M. (2008) Mesocrystals and Nonclassical Crystallization, 276 p. Wiley, U.K.Google Scholar

  • Cölfen, H., and De Yoreo, J.J. (2014) Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microscopy and Microanalysis, 20, 425–436.Google Scholar

  • De Yoreo, J.J., Gilbert, P., Sommerdijk, N., Penn, R.L., Whitelam, S., Joester, D., Zhang, H.Z., Rimer, J.D., Navrotsky, A., Banfield, J.F., and others. (2015) Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 349, 6247.Google Scholar

  • Derjaguin, B.V., and Landau, L. (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physico Chimica URSS, 14, 633–662.Google Scholar

  • Dreissig, I., Weiss, S., Hennig, C., Bernhard, G., and Zanker, H. (2011) Formation of uranium(IV)-silica colloids at near-neutral pH. Geochimica et Cosmochimica Acta, 75, 352–367.Google Scholar

  • Fayek, M., Utsunomiya, S., Ewing, R.C., Riciputi, L.R., and Jensen, K.A. (2003) Oxygen isotopic composition of nano-scale uraninite at the Oklo-Okélobondo natural fission reactors, Gabon. American Mineralogist, 88, 1583–1590.Google Scholar

  • Fuchs, S., Schumann, D., Williams-Jones, A., and Vali, H. (2015) The growth and concentration of uranium and titanium minerals in hydrocarbons of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Chemical Geology, 393, 55–66.Google Scholar

  • Gatzweiler, R. (1987) Uranium mineralization in the Proterozoic Otish Basin, central Quebec, Canada. In G. Friedrich, R. Gatzweiler, and J. Vogt, Eds., Uranium Mineralization—New Aspects on Geology, Mineralogy, Geochemistry and Exploration Methods, 27, p. 27–48. Monograph Series on Mineral, Schweizerbart Science Publishers.Google Scholar

  • Goldhaber, M.B., Reynolds, R.L., and Rye, R.O. (1978) Origin of a South Texas roll-type uranium deposit: 11. Sulfide petrology and sulfur isotope studies. Economic Geology, 73, 1690–1705.Google Scholar

  • Granger, H.C., and Warren, C.G. (1969) Unstable sulfur compounds and the origin of roll-type uranium deposits. Economic Geology, 64, 160–171.Google Scholar

  • Habraken, W., Tao, J.H., Brylka, L.J., Friedrich, H., Bertinetti, L., Schenk, A.S., Verch, A., Dmitrovic, V., Bomans, P.H.H., Frederik, P.M., and others. (2013) Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nature Communications, 4, 1507.Google Scholar

  • Hostetler, P.B., and Garrels, R.M. (1962) Transportation and precipitation of uranium and vanadium at low temperatures, with special reference to sandstone type uranium deposits. Economic Geology, 57, 137–167.Google Scholar

  • Hotze, E.M., Phenrat, T., and Lowry, G.V. (2010) Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. Journal of Environmental Quality, 39, 1909–1924.Google Scholar

  • Hochella, M.F. Jr., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L. and Twining, B.S. (2008) Nanominerals, Mineral Nanoparticles, and Earth Systems. Science, 319, 1631–1635.Google Scholar

  • Hofmann, B.A. (1999) Geochemistry of Natural Redox Fronts—A Review. Technical Report 99-05, National Cooperative for the Disposal of Radioactive Waste ISSN 1015-2636, 177 p.Google Scholar

  • Killian, C.E., Metzler, R.A., Gong, Y.U.T., Olson, I.C., Aizenberg, J., Politi, Y., Wilt, F.H., Scholl, A., Young, A., Doran, A., and others. (2009) Mechanism of Calcite co-orientation in the sea urchin tooth. Journal of the American Chemical Society, 131, 18,404–18,409.Google Scholar

  • Kretzschmar, R., and Schäfer, T. (2005) Metal retention and transport on colloidal particles in the environment. Elements, 1, 205–210.Google Scholar

  • Lee, M. (2010) Transmission electron microscopy (TEM) of Earth and planetary materials: a review. Mineralogical Magazine, 74, 1–27.Google Scholar

  • Li, D.S., Soberanis, F., Fu, J., Hou, W.T., Wu, J.Z., and Kisailus, D. (2013) Growth mechanism of highly branched titanium dioxide nanowires via oriented attachment. Crystal Growth & Design, 13, 422–428.Google Scholar

  • Lichtner, P.C., and Eikenberg, J. (1994) Propagation of a hyperalkaline plume into the geological barrier surrounding a radioactive waste repository. National Cooperative for the Disposal of Radioactive Waste Technical Report, 93-16, 57ppGoogle Scholar

  • Liyanage, D.D., Rajika J.K.A., Thamali, R.J.K.A., Kumbalatara, A.A.K., Weliwita J.A., and Witharana, S. (2016) An analysis of nanoparticle settling times in liquids Journal of Nanomaterials, Article ID 7061838, 7 p., http://dx.doi.org/10.1155/2016/7061838.

  • Long, J.C.S., and Ewing, R.C. (2004) Yucca Mountain: Earth-Science Issues at a Geologic Repository for High-Level Nuclear Waste. Annual Review of Earth and Planetary Sciences, 32, 363–401.Google Scholar

  • Mahamid, J., Sharir, A., Addadi, L., and Weiner, S. (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proceedings of the National Academy of Sciences, 105, 12,748–12,753.Google Scholar

  • Min, M., Chen, J., Wang, J., Wei, G., and Fayek, M. (2005) Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China. Ore Geology Reviews, 26, 51–69.Google Scholar

  • Olsson, M., Jakobsson, A.M., and Albinsson, Y. (2002) Surface charge densities of two actinide(IV) oxides: UO2 and ThO2. Journal of Colloid Interface Sciences, 256, 256–261.Google Scholar

  • Park, G.S., Shindo, D., Waseda, Y., and Sugimoto, T. (1996) Internal structure analysis of monodispersed pseudocubic hematite particles by electron microscopy. Journal of Colloid and Interface Science, 177, 198–207.Google Scholar

  • Pearcy, E.C., Prikryl, J.D., Murphy, W.M., and Leslie, B.W. (1994) Alteration of uraninite from the Nopal I deposit, Pena Blanca District, Chihuahua, Mexico, compared to degradation of spent nuclear fuel in the proposed U.S. high-level nuclear waste repository at Yucca Mountain, Nevada. Applied Geochemistry, 9, 713–73.Google Scholar

  • Penn, R.L., and Banfield, J.F. (1999) Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochimica et Cosmochimica Acta, 63, 1549–1557.Google Scholar

  • Politi, Y., Arad, T., Klein, E., Weiner, S., and Addadi, L. (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science, 306, 1161–1164.Google Scholar

  • Reynolds, R.L., and Goldhaber, M.B. (1978) Origin of a South Texas roll-type uranium deposit: I. Alteration of iron-titanium oxide minerals. Economic Geology, 73, 1677–1689.Google Scholar

  • Reynolds, R.L., and Goldhaber, M.B. (1983) Iron disulfide minerals and the genesis of roll-type uranium deposits. Economic Geology, 78, 105–120.Google Scholar

  • Reynolds, R.L., Goldhaber, M.B., and Carpenter, D.J. (1982) Biogenic and non-biogenic ore-forming processes in the South Texas uranium district: Evidence from the Panna Maria deposit. Economic Geology, 77, 541–556.Google Scholar

  • Riegler, T., Beaufort, M.F., Allard, T., Pierson-Wickmann, A.C., and Beaufort, D. (2016) Nanoscale relationships between uranium and carbonaceous material in alteration halos around unconformity-related uranium deposits of the Kiggavik camp, Paleoproterozoic Thelon Basin, Nunavut, Canada. Ore Geology Reviews, 79, 382–391.Google Scholar

  • Savage, D., Stenhouse, M., and Benbow, S. (2000) Evolution of near-field physicochemical characteristics of the SFR Repository. Swedish Nuclear Power Inspectorate (SKI). Report 00:49 Project Number 99136, 109 p.Google Scholar

  • Schindler, M., and Hochella, M.F. (2016) Nanomineralogy is a new dimension in understanding illusive geochemical processes in soils: The case of low solubility index elements. Geology, 44, 515–519.Google Scholar

  • Schindler, M., Fayek, M., and Hawthorne, F.C. (2010) Uranium-rich opal from the Nopal I uranium deposit, Peña Blanca, Mexico: evidence for the uptake and retardation of radionuclides. Geochimica et Cosmochimica Acta, 74, 187–202.Google Scholar

  • Schmidt, M., Wilson, R.E., Lee, S.S., Soderholm, L., and Fenter, P. (2012) Adsorption of plutonium oxide nanoparticles. Langmuir, 28, 2620–2627.Google Scholar

  • Schmidt, M., M., Lee, S.S., Wilson, R.E., Knope, K.E., Bellucci, F., Eng, P.J., Stubbs, J.E., Soderholm, L., and Fenter, P. (2013) Surface-mediated formation of Pu(IV) nanoparticles at the muscovite-electrolyte interface. Environmental Science & Technology, 47, 14,178–14,184.Google Scholar

  • Shindo, D., Park, G.S., Waseda, Y., and Sugimoto, T. (1994) Internal structure-analysis of monodispersed peanut-type hematite particles produced by the gel-sol method. Journal of Colloid and Interface Science, 168, 478–484.Google Scholar

  • Singer, D.M., Farges, F., and Brown, G.E. Jr. (2009) Biogenic nanoparticulate UO2: Synthesis, characterization, and factors affecting surface reactivity. Geochimica et Cosmochimica Acta, 73, 3593–3611.Google Scholar

  • Smith, K.F., Bryan, N.D., Swinburne, A.D., Bots, P., Shaw, S., Natrajan, L.S., Frederick, J., Mosselmans, W., Livens, F.R., and Morris, K. (2015) U(VI) behaviour in hyperalkaline calcite systems. Geochimica et Cosmochimica Acta, 148, 343–359.Google Scholar

  • Suzuki, Y., Kelly, S.D., Kemner, K.M., and Banfield, J.F. (2002) Radionuclide contamination: Nanometre-size products of uranium bioreduction. Nature, 419, 134.Google Scholar

  • Suzuki, Y., Mukai, H., Ishimura, T., Yokoyama, T.D., Sakata, S., Hirata, T., Iwatsuki, T. and Mizuno, T. (2015) Formation and geological sequestration of uranium nanoparticles in Deep Granitic Aquifer. Scientific Reports, 6, 22701. .CrossrefGoogle Scholar

  • Traexler, K.A., and Ewing, R.C. (2002) Colloid Formation and the Potential Effects on Radionuclide Transport in a Geologic Repository for Spent Nuclear Fuel. Department of Energy. (DOE/SNF/REP-070).Google Scholar

  • Verwey, E., Overbeek, J., and van Nes, K. (1948) The Theory of the Stability of Liophobic Colloids: The interaction of sol particles having an electric double layer. Elsevier, Amsterdam.Google Scholar

  • Vilks, P., Cramer, J.J., Bachinski, D.B., Doern, D.C., and Miller, H. G. (1993) Studies of colloids and suspended particles, Cigar Lake uranium deposit, Saskatchewan, Canada. Applied Geochemistry, 8, 605–616.Google Scholar

  • Wang, Y., Frutschi, M., Suvorova, E., Phrommavanh, V., Descostes., Osman, A.A.A., Geipel, G., and Bernier-Latmani, R. (2013) Mobile uranium (IV)-bearing colloids in a mining-impacted wetland. Nature Communications, 4, 2942–2951.Google Scholar

  • Weber, F.A., Voegelin, A., Kaegi, R., and Kretzschmar, R. (2009) Contaminant mobilization by metallic copper and metal sulphide colloids in flooded soil. Nature Geoscience, 2, 267–271.Google Scholar

  • Wirth, R. (2009) Focused ion beam combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometer scale. Chemical Geology, 261, 217–229.Google Scholar

  • Yuwono, V.M., Burrows, N.D., Soltis, J.A., and Penn, R.L. (2010) Oriented aggregation: Formation and transformation of mesocrystal intermediates revealed. Journal of the American Chemical Society, 132, 2163–2165.Google Scholar

About the article

Received: 2016-10-12

Accepted: 2017-05-27

Published Online: 2017-09-05

Published in Print: 2017-09-26


Citation Information: American Mineralogist, Volume 102, Issue 9, Pages 1776–1787, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5984.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in