Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 102, Issue 9


Synthesis and crystal structure of LiNbO3-type Mg3Al2Si3O12: A possible indicator of shock conditions of meteorites

Takayuki Ishii
  • Corresponding author
  • Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
  • Geodynamics Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ryosuke Sinmyo / Tetsuya Komabayashi
  • School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FE, U.K.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tiziana Boffa Ballaran / Takaaki Kawazoe / Nobuyoshi Miyajima / Kei Hirose / Tomoo Katsura
Published Online: 2017-09-05 | DOI: https://doi.org/10.2138/am-2017-6027


LiNbO3-type Mg2.98(2)Al1.99(2)Si3.02(2)O12 (py-LN) was synthesized by recovering a run product from 2000 K and 45 GPa to ambient conditions using a large volume press. Rietveld structural refinements were carried out using the one-dimensional synchrotron XRD pattern collected at ambient conditions. The unit-cell lattice parameters were determined to be a = 4.8194(3) Å, c = 12.6885(8) Å, V = 255.23(3) Å3, with Z = 6 (hexagonal, R3c). The average A-O and B-O distances of the AO6 and BO6 octahedra have values similar to those that can be obtained from the sum of the ionic radii of the averaged A- and B-site cations and oxygen (2.073 and 1.833 Å, respectively). The present compound has the B-site cations at the octahedral site largely shifted along the c axis compared with other LiNbO3-type phases formed by back-transition from perovskite (Pv)-structure, and as a result, the coordination number of this site is better described as 3+3. It appears therefore that the B-site cation in the octahedral position cannot be completely preserved during the back-transition because of the small size of Si and Al, which occupy usually a tetrahedral site at ambient conditions. The formation of py-LN can be explained by the tilting of BO6 octahedra of the perovskite structure having the pyrope composition and formed at high P-T conditions. The tilting is driven by the decrease in ionic radius ratio between the A-site cation and oxygen during decompression. This also explains why there is no back-transition from the Pv-structure to the ilmenite-structure during decompression, since this is a reconstructive phase transition whose activation energy cannot be overcome at room temperature. Py-LN may be formed in shocked meteorites by the back-transformation after the garnet-bridgmanite transition, and will indicate shock conditions around 45 GPa and 2000 K.

Keywords: Bridgmanite; large volume press; Rietveld analysis; LiNbO3; high pressure

References cited

  • Akaogi, M., Tanaka, A., and Ito, E. (2002) Garnet–ilmenite–perovskite transitions in the system Mg4Si4O12–Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria, calorimetry and implications for mantle structure. Physics of the Earth and Planetary Interiors, 132, 303–324.Google Scholar

  • Akaogi, M., Abe, K., Yusa, H., Ishii, T., Tajima, T., Kojitani, H., Mori, D., and Inaguma, Y. (2016) High-pressure high-temperature phase relations in FeTiO3 up to 35 GPa and 1600°C. Physics and Chemistry of Minerals, 44, 63–73.Google Scholar

  • Brown, I.D., and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244–247.Google Scholar

  • Dubrovinsky, L.S., El Goresy, A., Gillet, P., Wu, X., and Simionivici, A. (2009) A novel natural shock-induced high-pressure polymorph of FeTiO3 with the Li-niobate structure from the Ries Crater, Germany. Meteoritics and Planetary Science Supplement, 72, 5094.Google Scholar

  • Funamori, N., Yagi, T., Miyajima, N., and Fujino, K. (1997) Transformation in garnet from orthorhombic perovskite to LiNbO3 phase on release of pressure. Science, 275, 513–515.Google Scholar

  • Geiger, C.A., Newton, R.C., and Kleppa, O.J. (1987) Enthalpy of mixing of synthetic almandine-grossular and almandine-pyrope garnets from high-temperature solution calorimetry. Geochimica et Cosmochimica Acta, 51, 1755–1763.Google Scholar

  • Hoppe, R. (1979) Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeitschrift für Kristallographie-Crystalline Materials, 150, 23–52.Google Scholar

  • Horiuchi, H., Ito, E., and Weidner, D.J. (1987) Perovskite-type MgSiO3: Single-crystal X-ray diffraction study. American Mineralogist, 72, 357–360.Google Scholar

  • Hsu, R., Maslen, E.N., Du Boulay, D., and Ishizawa, N. (1997) Synchrotron X-ray studies of LiNbO3 and LiTaO3. Acta Crystallographica, B53, 420–428.Google Scholar

  • Inaguma, Y., Yoshida, M., Tsuchiya, T., Aimi, A., Tanaka, K., Katsumata, T., and Mori, D. (2010) High-pressure synthesis of novel lithium niobate-type oxides. Journal of Physics: Conference Series, 215, 012131.Google Scholar

  • Inaguma, Y., Sakurai, D., Aimi, A., Yoshida, M., Katsumata, T., Mori, D., Yeon, J., and Halasyamani, P.S. (2012) Dielectric properties of a polar ZnSnO3 with LiNbO3-type structure. Journal of Solid State Chemistry, 195, 115–119.Google Scholar

  • Irifune, T., Koizumi, T., and Ando, J.I. (1996) An experimental study of the garnetperovskite transformation in the system MgSiO3–Mg3Al2Si3O12. Physics of the Earth and Planetary Interiors, 96, 147–157.Google Scholar

  • Ishii, T., Shi, L., Huang, R., Tsujino, N., Druzhbin, D., Myhill, R., Li, Y., Wang, L., Yamamoto, T., Miyajima, N., Kawazoe, T., Nishiyama, N., Higo, Y., Tange, Y., and Katsura, T. (2016) Generation of pressures over 40 GPa using Kawaitype multi-anvil press with tungsten carbide anvils. Review of Scientific Instruments, 87, 024501.Google Scholar

  • Izumi, F., and Momma, K. (2007) Three-dimensional visualization in powder diffraction. Solid State Phenomena, 130, 15–20.Google Scholar

  • Kesson, S.E., Gerald, J.F., Shelley, J.M.G., and Withers, R.L. (1995) Phase relations, structure and crystal chemistry of some aluminous silicate perovskites. Earth and Planetary Science Letters, 134, 187–201.Google Scholar

  • Ko, J., and Prewitt, C.T. (1988) High-pressure phase transition in MnTiO3 from the ilmenite to the LiNbO3 structure. Physics and Chemistry of Minerals, 15, 355–362.Google Scholar

  • Leinenweber, K., Utsumi, W., Tsuchida, Y., Yagi, T., and Kurita, K. (1991) Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3. Physics and Chemistry of Minerals, 18, 244–250.Google Scholar

  • Liu, Z., Irifune, T., Nishi, M., Tange, Y., Arimoto, T., and Shinmei, T. (2016) Phase relations in the system MgSiO3–Al2O3 up to 52GPa and 2000K. Physics of the Earth and Planetary Interiors, 257, 18–27.Google Scholar

  • Miyajima, N., Fujino, K., Funamori, N., Kondo, T., and Yagi, T. (1999) Garnetperovskite transformation under conditions of the Earth’s lower mantle: an analytical transmission electron microscopy study. Physics of the Earth and Planetary Interiors, 116, 117–131.Google Scholar

  • Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276.Google Scholar

  • Murakami, M., Ohishi, Y., Hirao, N., and Hirose, K. (2012) A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature, 485, 90–94.Google Scholar

  • Navrotsky, A. (1999) A lesson from ceramics. Science, 284, 1788–1789.Google Scholar

  • Seto, Y., Nishio-Hamane, D., Nagai, T., and Sata, N. (2010) Development of a software suite on X-ray diffraction experiments. Review of High Pressure Science and Technology, 20(3).Google Scholar

  • Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar

  • Sharp, T.G., Lingemann, C.M., Dupas, C., and Sötffler, D. (1997) Natural occurrence of MgSiO3-ilmenite and evidence for MgSiO3-perovskite in a shocked L chondrite. Science, 277, 352–355.Google Scholar

  • Tomioka, N., Fujino, K. (1997) Natural (Mg,Fe)SiO3-ilmenite and-perovskite in the Tenham meteorite. Science, 277, 1084–1086.Google Scholar

  • Toraya, H. (1990) Array-type universal profile function for powder pattern fitting. Journal of Applied Crystallography, 23, 485–491.Google Scholar

  • Vanpeteghem, C.B., Angel, R.J., Ross, N.L., Jacobsen, S.D., Dobson, D.P., Litasov, K.D., and Ohtani, E. (2006) Al, Fe substitution in the MgSiO3 perovskite structure: a single-crystal X-ray diffraction study. Physics of the Earth and Planetary Interiors, 155, 96–103.Google Scholar

  • Walter, M.J., Kubo, A., Yoshino, T., Brodholt, J., Koga, K.T., and Ohishi, Y. (2004) Phase relations and equation-of-state of aluminous Mg-silicate perovskite and implications for Earth’s lower mantle. Earth and Planetary Science Letters, 222, 501–516.Google Scholar

  • Xu, Y., McCammon, C., and Poe, B.T. (1998) The effect of alumina on the electrical conductivity of silicate perovskite. Science, 282, 922–924.Google Scholar

About the article

Received: 2016-11-26

Accepted: 2017-05-04

Published Online: 2017-09-05

Published in Print: 2017-09-26

Citation Information: American Mineralogist, Volume 102, Issue 9, Pages 1947–1952, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-6027.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in