Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 102, Issue 9


Radiation damage in sulfides: Radioactive galena from burning heaps, after coal mining in the Lower Silesian basin (Czech Republic)

Michal Čurda
  • Corresponding author
  • Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic
  • Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Viktor Goliáš
  • Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariana Klementová
  • Institute of Inorganic Chemistry, Czech Academy of Sciences, Prague 250 68 Husinec-Řež, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ladislav Strnad
  • Laboratories of the Geological Institutes, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zdeněk Matěj
  • Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Radek Škoda
  • Institute of Earth Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-05 | DOI: https://doi.org/10.2138/am-2017-6036


The isotopic composition of lead (207Pb/206Pb, 208Pb/206Pb, and 210Pb) in a recently formed galena from burning heaps after coal mining in Radvanice, Markoušovice, and Rybníček, the Lower Silesian basin, Czech Republic, was studied in detail. 210Pb activity in galena varied from 135 ± 9 to 714 ± 22 Bq/g and calculated integral doses ranged from 2.21 × 1011 to 6.11 × 1011 α/g. The radioactivity of the galena causes micro-deformations in its crystal structure as indicated by the Williamson-Hall graphs, showing that the level of micro-strain depends on the length of time that galena samples were exposed to the radiation. However, the crystal structure of galena is affected very inhomogenously; according to TEM investigations there are domains of fully crystalline, polycrystalline, and fully metamict galena within one crystal. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine the isotopic composition of the studied galena. The stable isotope ratios of Pb varied for 207Pb/206Pb from 0.8402 to 0.8435 and for 208Pb/206Pb from 2.0663 to 2.0836. The average ratios 207Pb/206Pb = 0.8312 and 208Pb/206Pb = 2.0421 were obtained for coal from the same localities. These isotope ratios show that there is no isotopic fractionation taking place during the coal burning and subsequent galena crystallization from hot gases.

Keywords: Galena; radiation; lead-isotopes; radiation effects; metamict state

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References cited

  • Borbély, A., Dragomir-Cernatescu, J., Ribárik, G., and Ungár, T. (2003) Computer program ANIZ for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals. Journal of Applied Crystallography, 36, 160–162.Google Scholar

  • Chlupáč, I., Brzobohatý, R., Kovanda, J., and Stráník, Z. (2011) Geological History of the Czech Republic, 436 p. Academia, Praha (in Czech).Google Scholar

  • Cimala, Z. (1997) Tracking prospection and mining of uranium deposits in Moravia and Eastern Bohemia, 130 p. O.z. GEAM Dolní Rožínka and SOO OS PHGN, Dolní Rožínka (in Czech).Google Scholar

  • Deeb, C., Castaing, J., Walter, P., Penhoud, P., Veyssiére, P., and Martinetto, P. (2004) Dislocations in milled galena (PbS). Metallurgical and Materials Transactions A, 35, 2223–2228.Google Scholar

  • Ďurišová, J., Ackerman, L., Strnad, L., Chrastný, V., and Borovička, J. (2015) Lead isotopic composition in biogenic certified reference materials determined by different ICP-based mass spectrometric techniques. Geostandards and Geoanalytical Research, 39, 209–220.Google Scholar

  • Ewing, R.C., Alkiviathes, M., Wang, L., and Wang, S. (2000) Radiation-induced amorphization. Reviews in Mineralogy and Geochemistry, 39, 317–361.Google Scholar

  • Ewing, R.C., Meldrum, A., Wang, L., Weber, W.J., and Corrales, L.R. (2003) Radiation effects in zircon. Reviews in Mineralogy and Geochemistry, 53, 387–425.Google Scholar

  • Farnan, I., Cho, H., and Weber, W.J. (2007) Quantification of actinide α-radiation damage in minerals and ceramics. Nature, 445, 190–193.Google Scholar

  • Hamrová, E., Goliáš, V., and Petrousek, A. (2010) Identifying century-old longspined Daphnia: species replacement in a mountain lake chracterised paleogenetic methods. Hydrobiologia, 643, 97–106.Google Scholar

  • Hřebec, J., and Veselý, T. (1984) Small uranium deposits in Permian-carboniferous rocks in Bohemian Massif. Geologie a hydrometalurgie uranu, 8, 27–54 (in Czech).Google Scholar

  • Jenkins, T. (2005) A brief history of semiconductors. Physics Education, 40, 430.Google Scholar

  • Jirásek, V. (2003) Under the Hammer and a Pick Symbol 1, 206 p. Nakladatelství Bor, Liberec (in Czech).Google Scholar

  • Jirásek, V. (2006) Black coal mining in the Markoušovice-Svatoňovice area in Jestřebí Mountains, 87 p. Tiskárna PRATR, Trutnov (in Czech).Google Scholar

  • Jirásek, V., Pauliš, P., and Ko’nátko, L. (2008) Minearals of the Ignác colliery burning heap in Markoušovice near Trutnov. Minerál, 3, 233–237 (in Czech).Google Scholar

  • Kafka, J., Ed. (2003) Ore and uranium mining in the Czech Republic, 647 p. Nakladatelství ANAGRAM (in Czech).Google Scholar

  • Katoh, Y., Snead, L.L., Szlufarska, I., and Weber, W.J. (2012) Radiation effects in SiC for nuclear structural applications. Current Opinion in Solid State and Materials Science, 13, 143–152.Google Scholar

  • Klimánek, P., and Kužel, R. (1988) X-ray diffraction line broadening due to dislocations in non-cubic materials. I. General considerations and the case of elastic isotropy applied to hexagonal crystals. Journal of Applied Crystallography, 21, 59–66.Google Scholar

  • Koš’nák, M., Mazuch, M., Opluštil, S., Kraft, P., Marek, J., Fatka, O., Kachlík, V., Sakala, J., Martínek, K., Holcová, K., Kvaček, Z., and Žák, J. (2011) Travelling through our prehistory, 192 p. Granit, s.r.o., Praha (in Czech).Google Scholar

  • Kozłowska, B., Walencik, A., Przylibski, T.A., Dorda, J., and Zipper, W. (2010) Uranium, radium and radon isotopes in selected brines of Poland. Nukleonika, 55, 519–522.Google Scholar

  • Kříbek, B., Malec, J., Barnet, I., Knésl, I., and Lukeš, P. (2008) Biogeochemical accumulation of heavy metals on the abandoned coal and uranium mine heap in Bečkov near Žacléř, 167–172 p. Zprávy o geologických výzkumech v roce 2007, Czech Geological Survey (in Czech).Google Scholar

  • Kužel, R. (2003) Information about powder diffractogram and its processing. Materials Structure, 10, 32–33 (in Czech).Google Scholar

  • Lábár, J.L. (2005) Consistent indexing of a (set of) SAED pattern(s) with the ProcessDiffraction program. Ultramicroscopy, 103, 237–249.Google Scholar

  • Le Cloarec, M.F., and Pennisi, M. (2001) Radionuclides and sulfur content in Mount Etna plume in 1983-1995: new constraints on the magma feeding system. Journal of Volcanology and Geothermal Research, 108, 141–155.Google Scholar

  • Le Cloarec, M.F., Lambert, G., and Ardouin, B. (1988) Isotopic enrichment of 210-Pb in gaseous emissions from Mount Etna (Sicily). Chemical Geology, 70, 128.Google Scholar

  • McClune, W.F. (2003), Powder Diffraction File. Diffraction Data, Newtown Square, Pennsylvania. International Centre for Diffraction Data (ICDD).Google Scholar

  • Mihaljevič, M., Ettler, V., Strnad, L., Šebek, O., Vonásek, F., Drahota, P., and Rohovec, J. (2009) Isotopic composition of lead in Czech coals. International Journal of Coal Geology, 78, 38–46.Google Scholar

  • Nasdala, L., Hanchar, J.M., Kronz, A., and Whitehouse, M.J. (2005) Long-term stability of alpha particle damage in natural zircon. Chemical Geology, 220(1), 83–103.Google Scholar

  • Němec, I., (2006) Removal of a burning heap. Remediation and restoration of the Kateřina colliery heap. Vesmír, 85, 624–625 (in Czech).Google Scholar

  • Novák, M., Emmanuel, S., Vile, M.A., Erel, Y., Véron, A., Pačes, T., Wieder, R.K., Vaněček, M., Štěpánova, M., Břízová, E., and Hovorka, J. (2003) Origin of lead in eight central european peat bogs determined from isotope ratios, strengths, and operation times of regional pollution sources. Environmental Science & Technology, 37, 437–445.Google Scholar

  • Palenik, C.S., Nasdala, L., and Ewing, R.C. (2003) Radiation damage in zircon. American Mineralogist, 88, 770–781.Google Scholar

  • Pauliš, P., and Kopecký, S. (2010) The most interesting mineralogical localities in Bohemia, Moravia and Silesia III, 112 p. Kuttna, Kutná Hora (in Czech).Google Scholar

  • Pauliš, P., Kopecký, S., and černý, P. (2007) Uranium minerals of the Czech Republic and their localities. 2nd part, 252 p. Kuttna, Kutná Hora (in Czech).Google Scholar

  • Pešek, J., Holub, V., Jaroš, J., Malý, L., Martínek, K., Prouza, V., Spudil, J., and Tásler, R. (2001) Geology and deposits of the upper-palaeozoic limnic basins in the Czech Republic, 243 p. Český geologický ústav, Praha (in Czech).Google Scholar

  • Porcelli, D., and Swarzenski, P.W. (2003) The behavior of U- and Th-series nuclides in groundwater. Reviews in Mineralogy and Geochemistry, 52, 317–361.Google Scholar

  • Schmidt, A.P. (1998) Lead precipitates from natural gas production installations. Journal of Geochemical Exploration, 62, 193–200.Google Scholar

  • Schmidt, A.P., Hartog, F.A., Os, van B.J.H., and Schuiling, R.D. (2000) Production of Pb-210 from a Schlochten Sandstone gas reservoir. Applied Geochemistry, 15, 1317–1329.Google Scholar

  • Sejkora, J., and Tvrdý J. (1999) Mineráls of the Kateřina colliery burning heap in Radvanice near Trutnov. Minerál, 5, 399–409 (in Czech).Google Scholar

  • Sejkora, J., Šrein, V., and Litochleb, J. (1998a) Lead minerals (native lead, galena, anglesite) from burning heaps of the Kateřina colliery in Radvanice near Trutnov. Bulletin mineralogicko-petrologického oddělení Národního muzea (Praha), 6, 232–237 (in Czech).Google Scholar

  • Sejkora, J., Litochleb, J., Tvrdý, J., and Šrein, V. (1998b) Mineral association of the Kateřina colliery burning heap in Radvanice near Trutnov and processes of its formation, 164–166 p. Zprávy o geologických výzkumech v roce 1997, Czech Geological Survey, Praha (in Czech).Google Scholar

  • Strnad, L., Mihaljevič, M., and Šebek, O. (2005) Laser ablation and solution ICPMS determination of REE in USGS BIR-1G, BHVO-2G and BCR-2G glass reference materials. Geostandards and Geoanalytical Research, 29, 303–314.Google Scholar

  • Sýkorová, I., Kříbek, B., Havelcová, M., Machovič, V., Špaldoňová, A., Lapčák, L., Knésl, I., and Blažek, J. (2016) Radiation- and self-ignition induced alterations of Permian uraniferous coal from the abandoned Novátor mine waste dump (Czech Republic). International Journal of Coal Geology, 168, 162–178.Google Scholar

  • Ungár, T., Dragomir, I., Révész, Á., and Jenkins, A. (1999) The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. Journal of Applied Crystallography, 32, 992–1002.Google Scholar

  • Ungár, T., Martinetto, P., Ribárik, G., Dooryhée, E., Walter, Ph., and Anne, M. (2002) Revealing the powdering methods of black makeup in Ancient Egypt by fitting microstructure based Fourier coefficients to the whole X-ray diffraction profiles of galena. Journal of Applied Physics, 91, 2455.Google Scholar

  • Vávra, V., and Losos, Z. (1992) New findings about secondary minerals from a burning heap in Radvanice near Trutnov. Geologický Prüzkum, 4, 101–102 (in Czech).Google Scholar

  • Voltaggio, M., Tuccimei, P., Brance, M., and Romoli, L. (1998) U-series disequilibrium radionuclides in sulphur incrustations from fumarolic field of Vulcano Island. Gechochemica et Cosmochimica Acta, 52, 2111–2127.Google Scholar

  • Wang, J., and Tomita, A. (2003) A chemistry on the volatility of some trace elements during coal combustion and pyrolysis. Energy & Fuels, 17, 954–960.Google Scholar

  • Worden, R.H., Manning, D.A.C., and Lythgoe, P.R. (2000) The origin and production geochemistry of radioactive lead (Pb-210) in NORM-contaminated formation waters. Journal of Geochemical Exploration, 69, 695–699.Google Scholar

  • Yashuda, K., Kinishita, C., Matsumura, S., and Ryazanov, A.I. (2003) Radiation-induced defects clusters in fully stabilized zirconia irradiated with ions and/ or electrons. Journal of Nuclear Materials, 319, 74–80.Google Scholar

  • Žáček, V., and Ondruš, P. (1997) Mineralogy of recently formed sublimates from the Kateřina colliery in Radvanice, Eastern Bohemia, Czech Republic. Věštník Českého geologického ústavu, 72, 289–302 (in Czech).Google Scholar

About the article

Received: 2016-11-30

Accepted: 2017-05-27

Published Online: 2017-09-05

Published in Print: 2017-09-26

Citation Information: American Mineralogist, Volume 102, Issue 9, Pages 1788–1795, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-6036.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in