Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 102, Issue 9


OH defects in quartz as monitor for igneous, metamorphic, and sedimentary processes

Roland Stalder
  • Corresponding author
  • Institute for Mineralogy and Petrography, University Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Potrafke
  • Institute for Mineralogy and Petrography, University Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kjell Billström / Henrik Skogby / Guido Meinhold
  • Geoscience Center, University of Göttingen, Goldschmidtstrasse 3, D-37077 Göttingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Gögele
  • Institute for Mineralogy and Petrography, University Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Berberich
  • Institute for Mineralogy and Petrography, University Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-05 | DOI: https://doi.org/10.2138/am-2017-6107


Oriented sections of more than 500 quartz grains from sediments, igneous, and metamorphic rocks from different localities in Sweden, Austria, Germany, and South Africa were analyzed by FTIR spectroscopy, and their OH defect content was determined with respect to the speciation and total defect water content. Systematic variations of defect speciation and statistical evaluation of total defect contents were used to evaluate the potential of FTIR spectroscopy on quartz as a thermometer in quartzite, as a tool for differentiation trends in granitic systems, and for provenance analysis of sedimentary rocks. In addition to the analyses of natural crystals, high-pressure annealing experiments at lower crustal conditions (1–3 kbar and 650–750 °C) were performed to document the effect of high-grade metamorphism on the defect chemistry. Results indicate that (1) quartz grains from unmetamorphosed granite bodies reveal interesting differentiation trends; (2) sediments and sedimentary rocks are valuable archives to preserve the pre-sedimentary OH defect chemistry, where individual signatures are preserved and can be traced back to potential source rocks; (3) OH defects are retained up to 300 °C over geological time scales; (4) long-term low-grade metamorphic overprint leads to a continuous annealing to lower defect water contents, where Al-specific OH defects survive best; and (5) middle to high-grade annealing drives toward a homogeneous defect partitioning from grain to grain, where the degree of attainment of equilibrium depends on temperature and duration of the thermal event.

In summary, OH defects in quartz crystals monitor parts of their geological history, and the systematic investigation and statistical treatment of a large amount of grains can be applied as an analytical tool to study sedimentary, metamorphic, and igneous processes.

Keywords: Quartz; hydrous defects; provenance; quartzite; granite

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References cited

  • Aines, R.D., and Rossman, G.R. (1984) Water in minerals? A peak in the infrared. Journal of Geophysical Research, 89, 4059–4071.Google Scholar

  • Aines, R.D., Kirby, S.H., and Rossman, G.R. (1984) Hydrogen speciation in synthetic quartz. Physics and Chemistry of Minerals, 11, 204–212.Google Scholar

  • Aldahan, A.A. (1985) Mineral diagenesis and petrology of the Dala sandstone. Bulletin of the Geological Institute Uppsala University, 12, 1–48.Google Scholar

  • Bambauer, H.U. (1961) Spurenelementgehalte und γ-Farbzentren in Quarzen aus Zerrklüften der Schweizer Alpen. Schweizerische Mineralogisch Petrographische Mitteilungen, 41, 335–369.Google Scholar

  • Bambauer, H.U. (1963) Merkmale des OH-Spektrums alpiner Quarze (3μ-Gebiet). Schweizerische Mineralogisch Petrographische Mitteilungen, 43, 259–268.Google Scholar

  • Baron, M.A., Stalder, R., Konzett, J., and Hauzenberger, C.A. (2015) OH-point defects in quartz in B- and Li-bearing systems and their application to pegmatites. Physics and Chemistry of Minerals, 42, 53–62.Google Scholar

  • Biró, T., Kovács, I.J., Király, E., Falus, G., Karátson, G., Bendö, Z., Francsik, T., and Sándorné, K. (2016) Concentration of hydroxyl defects in quartz from various rhyolitic ignimbrite horizons: results from unpolarized micro-FTIR analyses on unoriented phenocryst fragments. European Journal of Mineralogy, 28, 313–327.Google Scholar

  • Chakraborty, D., and Lehmann, G. (1976) Distribution of OH in synthetic and natural quartz crystals. Journal of Solid State Chemistry, 17, 305–311.Google Scholar

  • Drake, H., Tullborg, E.L., and Page, L. (2009) Distinguished multiple events of fracture mineralization related to far-field orogenic effects in Paleoproterozoic crystalline rocks, Simpevarp area, SE Sweden. Lithos, 110, 37–49.Google Scholar

  • Ehlers, J., Meyer, K.D., and Stephan, H.J. (1984) The pre-Weichselian glaciations of North-West Europe. Quaternary Science Reviews, 3, 1–40.Google Scholar

  • Eissmann, L. (1986) Quartärgeologie und Geschiebeforschung im Leipziger Land mit einigen Schluβfolgerungen zu Stratigraphie und Vereisungsablauf im Norddeutschen Tiefland. In Richter, E., Baudenbacher, R., and Eissmann, L., Eds., Die Eiszeitgeschiebe in der Umgebung von Leipzig. Bestand, Herkunft, Nutzung und quartärgeologische Bedeutung, 3, 105–133. Altenburger Naturwissenschaftliche Forschung, Naturkundliches Museum Mauritianum, Altenburg (in German).Google Scholar

  • Eliasson, T., and Schöberg, H. (1989) U-Pb dating of the post-kinematic Sveconorwegian (Grenvillian) Bohus granite, SW Sweden—evidence of restitic zircons. Precambrian Research, 51, 337–350.Google Scholar

  • Frigo, C., Stalder, R., and Hauzenberger, C.A. (2016) OH defects in quartz in granitic systems doped with spodumene, tourmaline and/or apatite: experimental investigations at 5–20 kbar. Physics and Chemistry of Minerals, 43, 717–729.Google Scholar

  • Geisler, T., and Schleicher, H. (2000) Composition and U-Th-total Pb model ages of polygenetic zircons from the Vånga granite, south Sweden: An electron microprobe study. Geologiska Föreningens i Stockholm Förhandlingar (GFF), 122, 227–235.Google Scholar

  • Gibson, R.L. (2002) Impact-induced melting of Archean granulites in the Vredefort Dome, South Africa. I: anatexis of metapelitic granulites. Journal of Metamorphic Geology, 20, 57–70.Google Scholar

  • Gibson, R.L., Reimold, W.U., and Wallmach, T. (1997) Origin of pseudotachylite in the lower Witwatersrand Supergroup, Vredefort Dome (South Africa): constraints from metamorphic studies. Tectonophysics, 283, 241–262.Google Scholar

  • Grimmer, J.C., Ritter, J., Eisbacher, G.H., and Fielitz, W. (2017) The late Variscan control on the location and assymmetry of the Upper Rhine Graben. International Journal of Earth Sciences, 106, 827–853.Google Scholar

  • Hess, J.C., Hanel, M., Arnold, M., Gaiser, A., Prowatke, S., Stadler, S., and Kober, B. (2000) Variscan magmatism at the Northern margin of the Moldanubian Vosges and Schwarzwald I. Ages of intrusion and cooling history. Beihefte zum European Journal of Mineralogy, 12, 79.Google Scholar

  • Hoschek, G. (2013) Garnet zonation in metapelitic schists from the Eclogite Zone, Tauern Window, Austria: comparison of observed and calculated profiles. European Journal of Mineralogy, 25, 615–629.Google Scholar

  • Houmark-Nielsen, M., and Kjær, K.H. (2003) Southwest Scandinavia, 40-15 kyr BP: palaeogeography and environmental change. Journal of Quaternary Science, 18, 769–786.Google Scholar

  • Kalt, A., Altherr, R., and Hanel, M. (2000) The variscan basement of the Schwarzwald. Beiheft 2 European Journal of Mineralogy, 12, 1–43.Google Scholar

  • Kats, A. (1962) Hydrogen in alpha quartz. Philips Research Reports, 17, 133–279.Google Scholar

  • Korja, A., and Heikkinen, P. (2005) The accretionary Svecofennian orogeny— insight from the BABEL profiles. Precambrian Research, 136, 241–268.Google Scholar

  • Krippner, A., and Bahlburg, H. (2013) Provenance of Pleistocene Rhine river middle terrace sands between the Swiss-German border and Cologne based on U-Pb detrital zircon ages. International Journal of Earth Sciences, 102, 917–932.Google Scholar

  • Kronenberg, A.K., and Kirby, S.H. (1987) Ionic conductivity of quartz: DC time dependence and transition in charge carriers. American Mineralogist, 72, 739–747.Google Scholar

  • Kronenberg, A.K., Kirby, S.H., Aines, R.D., and Rossman, G.R. (1986) Solubility and diffusional uptake of hydrogen in quartz at high water pressures: implications for hydrolytic weakening. Journal of Geophysical Research, 91B, 12723–12744.Google Scholar

  • Libowitzky, E., and Rossman, G.R. (1997) An IR calibration for water in minerals. American Mineralogist, 82, 1111–1115.Google Scholar

  • Miyoshi, N., Yamaguci, Y., and Maino, K. (2005) Successive zoning of Al and H in hydrothermal vein quartz. American Mineralogist, 90, 310–315.Google Scholar

  • Müller, A., and Koch-Müller, M. (2009) Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineralogical Magazine, 73, 569–583.Google Scholar

  • Müller, A., Wiedenbeck, M., van den Kerkhof, A.M., Kronz, A., and Simon, K. (2003) Trace elements in quartz—a combined electron microprobe, secondary ion mass speactrometry, laser ablation ICP-MS, and cathodoluminescence study. European Journal of Mineralogy, 15, 747–763.Google Scholar

  • Müller, A., van den Kerkhof, A.M., Behr, H.-J., Kronz, A., and Koch-Müller, M. (2009) The evolution of late-Hercynian granites and rhyolites documented by quartz—a review. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100, 185–204.Google Scholar

  • Paterson, M.S. (1986) The thermodynamics of water in quartz. Physics and Chemistry of Minerals, 13, 245–255.Google Scholar

  • Paul, J., Wemmer, K., and Ahrendt, H. (2008) Provenance of siliciclastic sediments (Permian to Jurassic) in the Central European Basin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 159, 641–650.Google Scholar

  • Pulvertaft, T.C.R. (1985) Aeolian dune and wet interdune sedimentation in the Middle Proterozoic Dala sandstone, Sweden. Sedimentary Geology, 44, 93–111.Google Scholar

  • Rovetta, M.R. (1989) Experimental and spectroscopic constraints on the solubility of hydrogen in quartz. Physics of the Earth and Planetary Interiors, 55, 326–334.Google Scholar

  • Rovetta, M.R., Holloway, J.R., and Blacic, J.D. (1986) Solubility of hydroxyl in natural quartz annealed in water at 900°C and 1.5 GPa. Geophysical Research Letters, 13, 145–148.Google Scholar

  • Söderlund, P., Page, L., and Söderlund, U. (2008)40 Ar/39Ar biotite and hornblende geochronology from the Oskarshamn area, SW Sweden: discerning multiple Proterozoic tectonothermal events. Geological Magazine, 145, 790–799.Google Scholar

  • Stalder, R. (2014) OH defect content in detrital quartz grains as an archive for crystallization conditions. Sedimentary Geology, 307, 1–6.Google Scholar

  • Stalder, R., and Konzett, J. (2012) OH defects in quartz in the system quartzalbite-water and granite-water between 5 and 25 kbar. Physics and Chemistry of Minerals, 39, 817–827.Google Scholar

  • Stalder, R., and Neuser, R.D. (2013) OH defects in detrital quartz grains: potential for application as tool for provenance analysis and overview over crustal average. Sedimentary Geology, 294, 118–126.Google Scholar

  • Stephan, H.J. (2001) The Young Baltic advance in the western Baltic depression. Geology Quarterly, 45, 359–363.Google Scholar

  • Tatzel, M., Dunkl, I., and von Eynatten, H. (2017) Provenance of Palaeo-Rhine sediments from zircon thermochronology, geochemistry, U/Pb dating and heavy mineral assemblages. Basin Research, 29, 396–417.Google Scholar

  • Thomas, S.M., Koch-Müller, M., Reichart, P., Rhede, D., Thomas, R., and Wirth, R. (2009) IR calibrations for water determination in olivine, r-GeO2 and SiO2 polymorphs. Physics and Chemistry of Minerals, 36, 489–509.Google Scholar

  • Welin, E., Einarsson, Ö., Gustafsson, B., Lindberg, R., Christiansson, K., Johansson, G., and Nilsson, Ö. (1977) Radiometric ages of intrusive rocks in Northern Sweden II. Sveriges Geologiska Undersökning, Yearbook 71 (6), 1–21.Google Scholar

  • Welin, E., Gorbatchev, R., and Kähr, A.-M. (1982) Zircon dating of the polymetamorphic rocks in southwestern Sweden. Sveriges Geologiska Undersökning, C797, 38 p.Google Scholar

  • Wilson, M.R., Sehlstedt, S., Claesson, L.Å., Smellie, J.A.T., Aftalion, M., Hamilton, P.J., and Fallick, A.E. (1987) Jörn: an early Proterozoic intrusive complex in a volcanic-arc environment, North Sweden. Precambrian Research, 36, 201–225.Google Scholar

  • Ziegler, P.A. (1990) Geological Atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij B.V., The Hague, 239 p.Google Scholar

About the article

Received: 2017-02-08

Accepted: 2017-05-23

Published Online: 2017-09-05

Published in Print: 2017-09-26

Citation Information: American Mineralogist, Volume 102, Issue 9, Pages 1832–1842, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-6107.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in