Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 102, Issue 9


Refractive indices of minerals and synthetic compounds

Ruth C. Shannon / Barbara Lafuente / Robert D. Shannon / Robert T. Downs
  • Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reinhard X. Fischer
  • Corresponding author
  • Universität Bremen, FB 5 Geowissenschaften, Klagenfurter Str. 2, and MAPEX Center for Materials and Processes, D-28359 Bremen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-05 | DOI: https://doi.org/10.2138/am-2017-6144


This is a comprehensive compilation of refractive indices of 1933 minerals and 1019 synthetic compounds including exact chemical compositions and references taken from 30 compilations and many mineral and synthetic oxide descriptions. It represents a subset of about 4000 entries used by Shannon and Fischer (2016) to determine the polarizabilities of 270 cations and anions after removing 425 minerals and compounds containing the lone-pair ions (Tl+, Sn2+, Pb2+, As3+, Sb3+, Bi3+, S4+, Se4+, Te4+, Cl5+, Br5+, I5+) and uranyl ions, U6+. The table lists the empirical composition of the mineral or synthetic compound, the ideal composition of the mineral, the mineral name or synthetic compound, the Dana classes and subclasses extended to include beryllates, aluminates, gallates, germanates, niobates, tantalates, molybdates, tungstates, etc., descriptive notes, e.g., structure polytypes and other information that helps define a particular mineral sample, and the locality of a mineral when known. Finally, we list nx, ny, nz, <nDobs> (all determined at 589.3 nm), <nDcalc>, deviation of observed and calculated mean refractive indices, molar volume Vm, corresponding to the volume of one formula unit, anion molar volume Van, calculated from Vm divided by the number of anions (O2−, F, Cl, OH) and H2O in the formula unit, the total polarizability <αAE>, and finally the reference to the refractive indices for all 2946 entries. The total polarizability of a mineral, <αAE>, is a useful property that reflects its composition, crystal structure, and chemistry and was calculated using the Anderson-Eggleton relationship αAE=(nD21)Vm4π+(4π3c)(nD21) where c = 2.26 is the electron overlap factor. The empirical polarizabilities and therefore, the combination of refractive indices, compositions, and molar volumes of the minerals and synthetic oxides in the table were verified by a comparison of observed and calculated total polarizabilities, <αAE> derived from individual polarizabilities of cations and anions. The deviation between observed and calculated refractive indices is <2% in most instances.

Keywords: Refractive index; electronic polarizabilities; optical properties; minerals; synthetic compounds; refractive-index calculation; Anderson-Eggleton relationship

References cited

  • Alfors, J.T., Stinson, M.C., and Matthews, R.A. (1965) Seven new barium minerals from Eastern Fresno County, California. American Mineralogist, 50, 314–340.Google Scholar

  • Anderson, O.L. (1975) Optical properties of rock-forming minerals derived from atomic properties. Fortschritte der Mineralogie, 52, 611–629.Google Scholar

  • Anderson, C.J., and Hensley, E.B. (1975) Index of refraction of barium oxide. Journal of Applied Physics, 46, 443.Google Scholar

  • Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2015) Handbook of Mineralogy. Mineralogical Society of America. Chantilly, Virginia, U.S.A., http://www.handbookofmineralogy.org.

  • Armbruster, T., Oberhänsli, R., and Kunz, M. (1993) Taikanite, BaSr2 Mn23+ O2[Si4O12], from the Wessels mine, South Africa: A chain silicate related to synthetic Ca3 Mn23+ O2[Si4O12]. American Mineralogist, 78, 1088–1095.Google Scholar

  • Bailly, R. (1948) Utilisation des radiations infra-rouge dans les recherche mineralogiques et en particulier pour la determination des mineraux opaques. Bulletin societe Francaise de Mineralogie, 70, 49–145.Google Scholar

  • Basso, R., Lucchetti, G., Zefiro, L., and Palenzona, A. (2000) Cerchiaraite, a new natural Ba-Mn-mixed anion silicate chloride from the Cerchiara mine, Northern Apennines, Italy. Neues Jahrbuch für Mineralogie Monatshefte, 2000, 373–384.Google Scholar

  • Belsky, A., Hellenbrandt, M., Karen, V.L., and Luksch, P. (2002) New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design. Acta Crystallographica, B58, 364–369.Google Scholar

  • Bloss, F.D., Gunter, M., Su, S-C., and Wolfe, H.E. (1983) Gladstone-Dale constants: A new approach. Canadian Mineralogist, 21, 93–99.Google Scholar

  • Bond, W.L. (1965) Measurement of the refractive indices of several crystals. Journal of Applied Physics, 36, 1674–1677.Google Scholar

  • Burianek, M., Birkenstock, J., Mair, P., Kahlenberg, V., Medenbach, O., Shannon, R.D., and Fischer, R.X. (2016) High-pressure synthesis, long-term stability of single crystals of diboron trioxide, B2O3, and an empirical electronic polarizability of [3]B3+. Physics and Chemistry of Minerals, 43, 527–534Google Scholar

  • Carobbi, G. (1935) Mercallite, nuovo minerale fra I prodotti dell attivita fumarolica vesuviana del 1933. Rendiconti, 21, 385–392.Google Scholar

  • Cesbron, F., and Ginderow, D. (1985) La sidwillite, MoO3. 2H2O, une nouvel espece mineral de Lake Como, Colorado, U.S.A. Bulletin de Mineralogie, 108, 813–823.Google Scholar

  • Chakhmouradian, A.R., Mitchell, R.H., Burns, P.C., Mikhailova, Y., and Reguir, E.P. (2008) Marianoite, a new member of the cuspidine group from the Prairie Lake silicocarbonatite, Ontario. Canadian Mineralogist, 46, 1023–1032.Google Scholar

  • Clark, A.M., Fejer, E.E., Couper, A.G., and Jones, G.C. (1984) Sweetite, a new mineral from Derbyshire. Mineralogical Magazine, 48, 267–269.Google Scholar

  • Clark, A.M., Fejer, E.E., Cressey, G., and Tandy, P.C. (1988) Ashoverite, a new mineral, and other polymorphs of Zn(OH)2 from Milltown, Ashover, Derbyshire. Mineralogical Magazine, 52, 699–702.Google Scholar

  • Cook, D. (1969) Sonolite, alleghanyite and leucophoenicite from New Jersey. American Mineralogist, 54, 1392–1398.Google Scholar

  • Deer, W.A., Howie, R.A., and Zussman, J. (1963a) Rock-Forming Minerals. Vol. 2: Chain silicates. Longman Green and Co., London, England, 379 pp.Google Scholar

  • Deer, W.A., Howie, R.A., and Zussman, J. (1963b) Rock-Forming Minerals. Vol. 4: Framework silicates. Longman, Green and Co., London, England, 435 pp.Google Scholar

  • Deer, W.A., Howie, R.A., and Zussman, J. (1978) Rock-Forming Minerals. Vol. 2A: Single chain silicates, 2nd edition. Halstead Press, John Wiley, New York, 680 pp.Google Scholar

  • Deer, W.A., Howie, R.A., and Zussman, J. (1982) Rock-Forming Minerals. Vol. 1A: Orthosilicates, 2nd edition. Longman House, Burnt Hill, Harlow, Essex CM20 2JE, England, 932 pp.Google Scholar

  • Deer, W.A., Howie, R.A., and Zussman, J. (1986) Rock-Forming Minerals. Vol. 1B: Di-silicates and ring silicates, 2nd edition. Longman Group, Longman House, Essex, England, 629 pp.Google Scholar

  • Deer, W.A., Howie, R.A., and Zussman, J. (1996) Rock-Forming Minerals. Vol. 5B: Non-silicates: Sulphates, Carbonates, Phosphates, Halides. Longman, Essex, England, 392 pp.Google Scholar

  • DeWaal, S.A., and Calk, L.C. (1973) Nickel minerals from Barberton, South Africa: VI. Liebenbergite, a nickel olivine. American Mineralogist, 58, 733–735.Google Scholar

  • Durrell, C. (1940) New data on the optical properties of tridymite. American Mineralogist, 25, 501–502.Google Scholar

  • Eggleton, R.A. (1991) Gladstone-Dale constants for the major elements in silicates: coordination number, polarizability, and the Lorentz-Lorentz relation. Canadian Mineralogist, 29, 525–532.Google Scholar

  • Elliott, P., Brugger, J., Pring, A., Cole, M.L., Willis, A.C., and Kolitsch, U. (2008) Birchite, a new mineral from Broken Hill, New South Wales, Australia: Description and structure refinement. American Mineralogist, 93, 910–917.Google Scholar

  • Ellis, W.P., and Lindstrom, R.M. (1964) Refractive indices of fluoride interference films on thorium dioxide. Optica Acta, 11, 287–294.Google Scholar

  • Feklichev, V.G. (1992) Diagnostic constants of minerals. Advances in Science and Technology in the USSR, CRC Press, Mir Publishers, London, 687 pp.Google Scholar

  • Fitzpatrick, J., and Pabst, A. (1986) Thalenite from Arizona. American Mineralogist, 71, 188–193.Google Scholar

  • Flanigen, E.M., Bennett, J.M., Grose, R.W., Cohen, J.P., Patton, R.L., Kirchner, R.M., and Smith, J.V. (1978) Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature, 271, 512–516.Google Scholar

  • Fleischer, M., Wilcox, R.E., and Matzko, J.J. (1984) Microscopic determination of the nonopaque minerals. USGS Bulletin 1627. 453 pp.Google Scholar

  • Flint, E.P., McMurdie, H.F., and Wells, L.S. (1941) Hydrothermal and X-ray studies of the garnet-hydrogarnet series and the relationship of the series to hydration products of Portland cement. Journal of Research of the National Bureau of Standards, 26, 13–33.Google Scholar

  • Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., and Rosenzweig, A. (1997) Dana’s New Mineralogy. The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, 8th edition. Wiley, New York, 1819 pp.Google Scholar

  • Gavrish, A.M., Zoz, E.I., Gulko, N.V., and Soloveva, A.E. (1975) Solid solutions in the system HfO2-CeO2. Inorganic Materials, 11, 668–670.Google Scholar

  • Genkin, A.D., and Muraveva, I.V. (1964) Indite and dzalindite, new indium minerals. American Mineralogist, 49, 439.Google Scholar

  • Greer, W.L.C. (1932) Mix-crystals of Ca2SiO4 and Mn2SiO4. American Mineralogist, 17, 135–142.Google Scholar

  • Gunter, M., and Bloss, F.D. (1982) Andalusite-kanonaite series: Lattice and optical parameters. American Mineralogist, 67, 1218–1228.Google Scholar

  • Gunter, M.E., and Ribbe, P.H. (1993) Natrolite group zeolites: Correlations of optical properties and crystal chemistry. Zeolites, 13, 435–440.Google Scholar

  • Han, X., Lahera, D.E., Serrano, M.D., Cascales, C., and Zaldo, C. (2012) Ultraviolet to infrared refractive indices of tetragonal double tungstate and double molybdate laser crystals. Applied Physics, B, 108, 509–514.Google Scholar

  • Hellwege, K.N., and Hellwege, A.M. (1962) Landolt-Börnstein, Band II. Teil 8.Optische Konstanten, Springer-Verlag, Berlin (in German).Google Scholar

  • Hellwege, K.N., and Hellwege, A.M. (1969) Landolt-Börnstein, New Series, Group III. Crystal and Solid State Physics, Vol. 2. Springer-Verlag, Berlin.Google Scholar

  • Hellwege, K.N., and Hellwege, A.M. (1979) Landolt-Börnstein, New Series, Group III. Crystal and Solid State Physics, Vol. 11. Springer-Verlag, Berlin.Google Scholar

  • Hellwege, K.N., and Hellwege, A.M. (1981) Landolt-Börnstein, New Series, Group III, Crystal and Solid State Physics, Vol. 16a: Oxides. Springer-Verlag, Berlin.Google Scholar

  • Henmi, C., Kusachi, I., and Henmi, K. (1995) Morimotoite, Ca3TiFe2+Si3O12, a new titanian garnet from Fuka, Okayama Prefecture, Japan. Mineralogical Magazine, 59, 115–120.Google Scholar

  • Hiemstra, S.A. (1955) Baddeleyite from Phalaborwa, Eastern Transvaal. American Mineralogist, 40, 275–282.Google Scholar

  • Hill, W.L., Faust, G.T., and Reynolds, D.S. (1944) The binary system P2O5-2CaO. P2O5. Part II. American Journal of Science, 242, 542–562.Google Scholar

  • Hintze, C. (1897) Handbuch der Mineralogie, Band II. Silcate und Titanate. Verlag- Veit, Leipzig (in German).Google Scholar

  • Hintze, C. (1915) Handbuch der Mineralogie, Band I, Abteilung 2. Verlag-Veit, Leipzig (in German).Google Scholar

  • Hintze, C. (1933) Handbuch der Mineralogie, Band I. Abteilung 4.De Gruyter, Berlin (in German).Google Scholar

  • Hintze, C. (1938) Handbuch der Mineralogie, Ergänzungsband I. Neue Mineralien. De Gruyter, Berlin (in German).Google Scholar

  • Hintze, C. (1960) Handbuch der Mineralogie, Ergänzungsband II. Neue Mineralien und neue Mineralnamen. De Gruyter, Berlin (in German).Google Scholar

  • Hintze, C. (1968) Handbuch der Mineralogie, Ergänzungsband III, Neue Mineralien und neue Mineralnamen. De Gruyter, Berlin (in German).Google Scholar

  • Iguchi, E., Matsuda, T., and Tilley, R.J.D. (1984) An estimation of polarizabilities in tungsten trioxide (WO3). Journal of Physics C, 17, 319–329.Google Scholar

  • Keat, P.P. (1954) A new crystalline silica. Science, 120, 328–330.Google Scholar

  • Khomyakov, A.P., Kazakova, M.E., and Pushcharovskii, D.Yu. (1981) Nacaphite, Na2CaPO4F, a new mineral. American Mineralogist, 66, 218.Google Scholar

  • King, B.W., and Suber, L.L. (1955) Some properties of the oxides of vanadium and their compounds. Journal of the American Ceramic Society, 38, 306–311.Google Scholar

  • Larsen, E.S. (1921) The microscopic determination of the nonopaque minerals. U.S. Geological Survey Bulletin 679. Government Printing Office, Washington, D.C.Google Scholar

  • Laubengayer, A.W., and Morton, D.S. (1932) Germanium. XXXIX The polymorphism of germanium dioxide. Journal of the American Chemical Society, 54, 2303–2320.Google Scholar

  • Lerch, W., Ashton, F.W., and Bogue, R.H. (1929) The sulfoaluminates of calcium. Journal of Research, 2, 715–731.Google Scholar

  • Marcopoulos, T., and Economou, M. (1981) Threophrastite, Ni(OH)2, a new mineral from northern Greece. American Mineralogist, 66, 1020–1021.Google Scholar

  • Marshukova, N.K., Palovskii, A.B., Sidorenko, G.A., and Christyakova, N.I. (1982) Vismirnovite, ZnSn(OH)6, and natanite, FeSn(OH)6, new tin minerals. American Mineralogist, 67, 1077.Google Scholar

  • McConnell, D. (1964) Refringence of garnets and hydrogarnets. Canadian Mineralogist, 8, 11–22.Google Scholar

  • McDonald, A.M., and Chao, G.Y. (2004) Haineaultite, a new hydrated sodium calcium titanosilicate from Mont Saint-Hilaire, Quebec: description, structure determination and genetic implications. Canadian Mineralogist, 42, 769–780.Google Scholar

  • McLune, W.F. (1989) Powder diffraction file: Inorganic phases. JCPDS International Centre for Diffraction Data, Swarthmore, Pennsylvania.Google Scholar

  • Medenbach, O., and Shannon, R.D. (1997) Refractive indices and optical dispersion of 103 synthetic and mineral oxides and silicates measured by a small-prism technique. Journal of the Optical Society of America, B, 14, 3299–3318.Google Scholar

  • Mills, S.J., Hatert, F., Nickel, E.H., and Ferraris, G. (2009) The standardisation of mineral group hierarchies: Application to recent nomenclature proposals. European Journal of Mineralogy, 21, 1073–1080.Google Scholar

  • Milton, C., Appleman, D.E., Appleman, M.H. Chao, E.C.T., Cuttitta, F., Dinnin, J.I., Dwornik, E.J., Ingram, B.L., and Rose, H.J. (1976) Merumite, a complex assemblage of chromium minerals from Guyana. U.S. Geological Survey Professional Paper 887, 1–29.Google Scholar

  • Miura, H., Suzaki, H., and Kikuchi, T. (1994) Synthesis and properties of the system Al2(SO4)3-Fe2(SO4)3. Mineralogical Journal, 17, 42–45.Google Scholar

  • Moore, P.B. (1972) Natrophilite, NaMn(PO4), has ordered cations. American Mineralogist, 57, 1333–1344.Google Scholar

  • Moore, P.B., and Smith, J.V. (1968) Wickmanite, MnSn(OH)6, a new mineral from Langban. American Mineralogist, 53, 1063.Google Scholar

  • National Bureau of Standards Circular 539 (1955–1960) Standard X-ray diffraction patterns. U.S Government Printing Office, Washington 25, D.C.Google Scholar

  • National Bureau of Standards Monograph Series 25 (1962–1981) Standard X-ray diffraction patterns: Sections 1–15. U.S Government Printing Office, Washington 25, D.C.Google Scholar

  • Nefedov, E.I., Griffin, W.L., and Kristiansen, R. (1977) Minerals of the schoenfliesite-wickmanite series from Pitkäranta, Karelia, U.S.S.R. Canadian Mineralogist, 15, 437–445.Google Scholar

  • Nelson, D.F. (1996) Landolt-Börnstein, New Series, Group III, Condensed Matter, Vol. 30.High frequency properties of dielectric crystals. Springer-Verlag, Berlin.Google Scholar

  • Nesse, W.D. (2013) Introduction to Optical Mineralogy, 2nd ed. Oxford University Press, New York.Google Scholar

  • Nixon, P.H., and Hornung, G. (1968) A new chromium garnet end member, knorringite from kimberlite. American Mineralogist, 53, 1853–1839.Google Scholar

  • Novak, G.A., and Gibbs, G.V. (1971) The crystal chemistry of the silicate garnets. American Mineralogist, 56, 791–825.Google Scholar

  • Orlandi, P., Pasero, M., and Vezzalini, G. (1998) Scandiobabingtonite, a new mineral from the Baveno pegmatite, Piedmont, Italy. American Mineralogist, 83, 1330–1334.Google Scholar

  • Palache, C. (1938) Leightonite, a new sulphate of Copper from Chile. American Mineralogist, 23, 34–37.Google Scholar

  • Palache, C., Berman, H., and Frondel, C. (1944) Dana’s System of Mineralogy, 7th ed., v. I Elements, sulfides, sulfosalts, oxides. 834 pp. Wiley.Google Scholar

  • Palache, C., Berman, H., and Frondel, C. (1951) Dana’s System of Mineralogy, 7th ed., v. II, 1124 pp. Wiley.Google Scholar

  • Palache, C., Berman, H., and Frondel, C. (1962) Dana’s System of Mineralogy, 7th ed., vol. III, Silica minerals. 334 pp. Wiley.Google Scholar

  • Palmer, J.L., and Gunter, M.E. (2000) Optical properties of natural and cationexchanged heulandite group zeolites. American Mineralogist, 85, 225–230.Google Scholar

  • Pekov, I.V., Chukanov, N.V., Turchkova, A.G., and Grishin, V.G. (2002) Ferronordite-(La), Na3Sr(La, Ce)FeSi6O17, a new mineral of the nordite group from the Lovozero massif, Kola Peninsula. American Mineralogist, 87, 1510.Google Scholar

  • Peters, T. (1965) A water-bearing andradite from the Totalp Serpentine, Davos, Switzerland. American Mineralogist, 50, 1482–1486.Google Scholar

  • Posnjak, E., and Merwin, H.E. (1919) The hydrated ferric oxides. American Journal of Science, 47, 311–347.Google Scholar

  • Pynchon, G.E., and Sieckmann, E.F. (1966) Refractive index of strontium oxide. Physical Review, 143, 595–597.Google Scholar

  • Qin, F., and Li, R.K. (2011) Predicting refractive indices of the borate optical crystals. Journal of Crystal Growth, 318, 642–644.Google Scholar

  • Rams, J., Tejeda, A., and Cabrera, J.M. (1997) Refractive indices of rutile as a function of temperature and wavelength. Journal of Applied Physics, 82, 994–997.Google Scholar

  • Ringwood, A.E. (1977) Synthesis of pyrope-knorringite solid solution series. Earth and Planetary Science Letters, 36, 443–448.Google Scholar

  • Roy, R., and McKinstry, H.A. (1953) Concerning the so-called Y(OH)3-type structure, and the structure of La(OH)3. Acta Crystallographica, 6, 365–366.Google Scholar

  • Ruchkin, E.D., Sokolova, M.N., and Batsanov, S.S. (1967) Optical properties of oxides of the rare earth elements. V. Study of monoclinic modifications (Bforms). Journal of Structural Chemistry, 8, 410–414.Google Scholar

  • Sahama, T.G., Lehtinen, M., and Rehtijärvi, P. (1973) Natural boehmite single crystals from Ceylon. Contributions of Mineralogy and Petrology, 39, 171–174.Google Scholar

  • Schmetzer, K., Horn, W., and Medenbach, O. (1981) Uber Kobaltkoritnigit, (Co, Zn) [H2O][AsO3OH], ein neues Mineral, und Pitticit, FeO3.As2O5.9-10H2O, ein röntgenamorphes Fe-Arsenat-Hydrat. Neues Jahrbuch für Mineralogie Monatshefte, 257–266.Google Scholar

  • Sclar, C.B., Carrison, L.C., and Schwartz, C.M. (1962) Optical crystallography of coesite. American Mineralogist, 47, 1292–1302.Google Scholar

  • Selkregg, K.R., and Bloss, F.D. (1980) Cordierites: compositional controls of Δ, cell parameters, and optical properties. American Mineralogist, 65, 522–533.Google Scholar

  • Shannon, R.D., and Fischer, R.X. (2006) Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Physical Review B73, 235111.Google Scholar

  • Shannon, R.D., and Fischer, R.X. (2016) Empirical electronic polarizabilities of ions for the prediction and interpretation of refractive indices: Oxides and oxysalts. American Mineralogist, 101, 2288–2300.Google Scholar

  • Shannon, R.D., Shannon, R.C., Medenbach, O., and Fischer, R.X. (2002) Refractive index and dispersion of fluorides and oxides. Journal of Physical and Chemical Reference Data, 31, 931–970.Google Scholar

  • Shigley, J.E., Kampf, A.R., and Rossman, G.R. (1986) New data on painite. Mineralogical Magazine, 50, 267–270.Google Scholar

  • Simmons, W.B., Pezzotta, F., Falster, A.U., and Webber, K.L. (2001) Londonite, a new mineral species: the Cs-dominant analogue of rhodizite from the Antandrokomby granitic pegmatite, Madagascar. Canadian Mineralogist, 39, 747–755.Google Scholar

  • Sokolova, E., Hawthorne, F.C., Agakhanov, A.A., and Pautov, L.A. (2003) The crystal structure of moskvinite-(Y), Na2K(Y, REE)[Si6O15], a new silicate mineral with [Si6O15] three-membered double rings from the Dara-I-Pioz moraine, Tien-Shan mountains, Tajikistan. Canadian Mineralogist, 41, 513–520.Google Scholar

  • Sonnet, P.M. (1981) Burtite, calcium hexahydroxostannate, a new mineral from El Hamman, central Morocco. Canadian Mineralogist, 19, 397–401.Google Scholar

  • Strunz, H., Soehnge, G., and Geier, B.H. (1958) Stottite, ein neues Germaniummineral and seine Paragenese in Tsumeb. Neues Jahrbuch Mineralogie Monatshefte, 85–96.Google Scholar

  • Sturman, B.D., Mandarino, J.A., and Corlett, M.I. (1977) Marićite, a sodium iron phosphate, from the Big Fish River area, Yukon Territory, Canada. Canadian Mineralogist, 15, 396–398.Google Scholar

  • Swanson, H.E., Morris, M.C., Evans, E.H., and Ulmer, L. (1962–1981) Standard X-ray diffraction patterns. National Bureau of Standards Monograph 25, Sections 1–15.Google Scholar

  • Thiel, J.P., Chiang, C.K., and Poeppelmeier, K.R. (1993) Structure of LiAl2(OH)7. 2H2O. Chemistry of Materials, 5, 297–304.Google Scholar

  • Tilley, C.E. (1933) Portlandite, a new mineral from Scawt Hill, County Antrim. Mineralogical Magazine, 23, 419–420.Google Scholar

  • Togari, K., and Akasaka, M. (1987) Okhotskite, a new mineral, an Mn3+-dominant member of the pumpellyite group, from the Kokuriki mine, Hokkaido, Japan. Mineralogical Magazine, 51, 611–614.Google Scholar

  • Trojer, F. (1963) Die oxydischen Kristallphasen der anorganischen Industrieprodukte. E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart. 375 pp.Google Scholar

  • Vergasova, L.P., Filatov, S.K., Seraphimova, E.K., and Varaksina, T.V. (1990) Kamachatkite KCu3OCl(SO4)2—A new mineral from volcanic sublimates. American Mineralogist, 75, 1210.Google Scholar

  • Voloshin, A.V., Pakhomovskii, Y.A., Rogatschev, D.L., Nadezhina, T.N., Pustscharovskii, D.Y., and Bahkchisaraytsev, A.Y. (1991) Clinobehoite—A new natural modification of Be(OH)2 from desilicated pegmatites. American Mineralogist, 76, 666–667.Google Scholar

  • Washburn, E.W. (1930) International Critical Tables of Numerical Data, Physics, Chemistry and Technology. National Research Council–U.S.A., McGraw-Hill Book Co., New York, 499 pp.Google Scholar

  • Weber, M.J. (1986) CRC Handbook of Laser Science and Technology. Volume V: Optical Materials, Part 3. Applications, Coatings and Fabrication. CRC Press, Boca Raton, 520 pp.Google Scholar

  • Weber, M.J. (1995) CRC Handbook of Laser Science and Technology. Supplement 2: Optical Materials, CRC Press, Boca Raton, 833 pp.Google Scholar

  • Webmineral (2015) http://www.webmineral.com.

  • Williams, S.A. (1985) Mopungite, a new mineral from Nevada. American Mineralogist, 70, 1330.Google Scholar

  • Williams, P.A., Leverett, P., Sharpe, J.L., and Colchester, D.M. (2005) Elsmoreite, cubic WO3×0.5H2O, a new mineral species from Elsmore, New South Wales, Australia. Canadian Mineralogist, 43, 1061–1064.Google Scholar

  • Winchell, A.N. (1931) The microscopic characters of artificial inorganic solid substances or artificial minerals, 2nd ed. Wiley, New York, 403 pp.Google Scholar

  • Winchell, A.N., and Winchell, H. (1964) The microscopical characters of artificial inorganic solid substances. Optical Properties of Artificial Minerals. Academic Press, New York, 439 pp.Google Scholar

  • Wise, W.S. (1975) Solid solution between the alunite, woodhouseite, and trandallite mineral series. Neues Jahrbuch für Mineralogie Monatshefte, 1975, 540–545.Google Scholar

  • Zadov, A.E., Gazeev, V.M., Karimova, O.V., Pertsev, N.N., Pekov, I.V., Galuskin, E.V., Galuskina, I.O., Gurbanov, A.G., Belakovsky, D.I., Borisovsky, S.E., Kartashov, P.M., Ivanova, A.G., and Yakubovich, O.V. (2011) Magnesioneptunite, KNa2Li(Mg, Fe)2Ti2Si8O24, a new mineral species of the neptunite group. Geology of Ore Deposits, 53, 775–782.Google Scholar

About the article

Received: 2017-03-20

Accepted: 2017-05-04

Published Online: 2017-09-05

Published in Print: 2017-09-26

Citation Information: American Mineralogist, Volume 102, Issue 9, Pages 1906–1914, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-6144.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in