Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 103, Issue 12


Electronic properties and compressional behavior of Fe–Si alloys at high pressure

Seiji Kamada
  • Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan
  • Department of Earth Science, Tohoku University, Sendai, 980-8578, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nanami Suzuki / Fumiya Maeda / Naohisa Hirao / Maki Hamada
  • Department of Earth Science, Tohoku University, Sendai, 980-8578, Japan
  • School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eiji Ohtani / Ryo Masuda / Takaya Mitsui
  • National Institute for Quantum and Radiological Science and Technology, Sayo, Hyogo, 679-5148, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yasuo Ohishi / Satoshi Nakano
Published Online: 2018-11-28 | DOI: https://doi.org/10.2138/am-2018-6425


Planetary cores are composed mainly of Fe with minor elements such as Ni, Si, O, and S. The physical properties of Fe alloys depend on their composition. Changes in c/a ratio, center shifts, and elastic properties of Fe and Fe–Ni alloys were reported previously. However, such properties of Fe light-element alloys have not yet been extensively studied. Si is a plausible candidate as a light element in planetary cores. Therefore, we studied the electronic properties and compressional behavior of Fe-Si alloys with a hexagonal-close-packed (hcp) structure under high pressure using synchrotron Mössbauer spectroscopy (SMS) and X‑ray diffraction (XRD). Center shifts (CS) were observed at pressures of 21.4–45.3 GPa for Fe-2.8wt%Si and of 30.9–62.2 GPa for Fe-6.1wt%Si. Some of SMS and XRD measurements were performed under the same conditions using a newly developed system at the BL10XU beamline of SPring-8, which allowed simultaneous characterization of the electron information and crystal structure. Changes in the CS values were observed at 36.9 GPa in Fe-2.8wt%Si and 54.3 GPa in Fe-6.1wt%Si. The ratios of c/a in the hcp structure were measured at pressures of 21.2–49.6 GPa in Fe-2.8wt%Si and 32.9–61.4 GPa in Fe-6.1wt%Si. The c/a ratio changed at pressures of 30–45 GPa in Fe-2.8wt%Si and at 50 GPa in Fe-6.1wt%Si. Changes in the CS and c/a ratio were explained according to the electronic isostructural transition in Fe–Si alloys. In addition, the transition pressure increased with increasing Si content in metallic iron. This finding is significant as changes in seismic wave velocities due to the change in c/a ratio of Fe–Si alloys with an hcp structure might be observed if Venus has a solid inner core.

Keywords: Synchrotron Mössbauer spectroscopy; diamond-anvil cell; electronic topological transition; compressional behavior; Fe-Si alloy

References cited

  • Aitta, A. (2012) Venus’s internal structure, temperature and core composition. Icarus, 218, 967–974.Google Scholar

  • Antonangeli, D., Siebert, J., Badro, J., Farber, D.L., Fiquet, G., Morard, G., and Ryerson, F.J. (2010) Composition of the Earth’s inner core from high-pressure sound velocity measurements in Fe-Ni-Si alloys. Earth and Planetary Science Letters, 295, 292–296.Google Scholar

  • Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P., and Morard, G. (2013) Melting of iron at Earth’s inner core boundary based on fast X‑ray diffraction. Science, 340, 464–466.Google Scholar

  • Asanuma, H., Ohtani, E., Sakai, T., Terasaki, H., Kamada, S., Hirao, N., and Ohishi, Y. (2011) Static compression of Fe0.83Ni0.09Si0.08 alloy to 374 GPa and Fe0.93Si0.07 alloy to 252 GPa: Implications for the Earth’s inner core. Earth and Planetary Science Letters, 310, 113–118.Google Scholar

  • Badro, J., Fiquet, G., Guyot, F., Gregoryanz, E., Occelli, F., Antonangeli, D., and d’Astuto, M. (2007) Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth’s core. Earth and Planetary Science Letters, 254, 233–238.Google Scholar

  • Birch, F. (1952) Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research, 57, 227–286.Google Scholar

  • Boehler, R., Santamaria-Perez, D., Errandonea, D., and Mezouar, M. (2008) Melting, density, and anisotropy of iron at core conditions: new X‑ray measurements to 150 GPa. Journal of Physics: Conference Series, 121, 022018.Google Scholar

  • Dewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., and Torrent, M. (2006) Quasihydrostatic equation of state of iron above 2 Mbar. Physical Review Letters, 97, 215504.Google Scholar

  • Dewaele, A., Torrent, M., Loubeyre, P., and Mezouar, M. (2008) Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations. Physical Review B, 78, 104102.Google Scholar

  • Fiquet, G., Badro, J., Guyot, F., Requardt, H., and Krisch, M. (2001) Sound velocities in iron to 110 gigapascals. Science, 291, 468–471.Google Scholar

  • Fischer, R.A., Campbell, A.J., Caracas, R., Reaman, D.M., Dera, P., and Prakapenka, V.B. (2012) Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth’s core. Earth and Planetary Science Letters, 357–358, 268–276.Google Scholar

  • Fischer, R.A., Campbell, A.J., Reaman, D.M., Miller, N.A., Heinz, D.L., Dera, P., and Prakapenka, V.B. (2013) Phase relations in the Fe-FeSi system at high pressures and temperatures. Earth and Planetary Science Letters, 373, 54–64.Google Scholar

  • Fischer, R.A., Campbell, A.J., Caracas, R., Reaman, N.A., Heinz, D.L., Dera, P., and Prakapenka, V.B. (2014) Equations of state in the Fe-FeSi system at high pressures and temperatures. Journal of Geophysical Research, 119, 2810–2827.Google Scholar

  • Glazyrin, K., Pourovskii, L.V., Dubrovinsky, L., Narygina, O., McCammon, C., Hewener, B., Schünemann, V., Wolny, J., Muffler, K., Chumakov, A.I., Crichton, W., Hanfland, M., Prakapenka, V.B., Tasnádi, F., Ekholm, M., Aichhorn, M., Vildosola, V., Ruban, A.V., Katsnelson, M.I., and Abrikosov, I.A. (2013) Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition. Physical Review Letters, 110, 117206.Google Scholar

  • Hirao, N., Ohtani, E., Kondo, T., and Kikegawa, T. (2004) Equation of state of iron-silicon alloys to megabar pressure. Physics Chemistry Minerals, 31, 329–336.Google Scholar

  • Jeanloz, R. (1981) Finite-strain equation of state for high-pressure phases. Geophysical Research Letters, 8(12), 1219–1222.Google Scholar

  • Kamada, S., Ohtani, E., Terasaki, H., Sakai, T., Miyahara, M., Ohishi, Y., and Hirao, N. (2012) Melting relationships in the Fe–Fe3S system up to the outer core conditions. Earth and Planetary Science Letters, 359–360, 23–33.Google Scholar

  • Lifshitz, I.M. (1960) Anomalies of electron characteristics of a metal in the high pressure region. Soviet Physics JETP, 11(5), 1130–1135.Google Scholar

  • Lin, J.-F., Heinz, D.L., Campbell, A.J., Devine, J.M., and Shen, G. (2002) Iron-silicon alloy in Earth’s core? Science, 295, 313–315.Google Scholar

  • Lin, J.-F., Campbell, A.J., and Heinz, D.L. (2003a) Static compression of iron-silicon alloys: Implications for silicon in the Earth’s core. Journal of Geophysical Research, 108(B1), 2045.Google Scholar

  • Lin, J.-F., Struzhkin, V.V., Sturhahn, W., Huang, E., Zhao, J., Hu, M. Y., Alp, E.E., Mao, H.-K., Boctor, N., and Hemley, R.J. (2003b) Sound velocities of iron-nickel and iron-silicon alloys at high pressures. Geophysical Research Letters, 30(21), 2112.Google Scholar

  • Lin, J.-F., Scott, H.P., Fischer, R.A., Chang, Y.-Y., Kantor, I., and Prakapenka, V.B. (2009) Phase relations of Fe-Si alloy in the Earth’s core. Geophysical Research Letters, 36, L06306.Google Scholar

  • Lodders, K., and Fegley, B. Jr. (1998) The Planetary Scientist’s Companion, 371 p. Oxford University Press, New York.Google Scholar

  • Mao, H.K., Wu, Y., Chen, L.C., Shu, J.F., and Jephcoat, A.P. (1990) Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: Implications for composition of the core. Journal of Geophysical Research, 95(B13), 21737–21742.Google Scholar

  • Mao, Z., Lin, J.-F., Liu, J., Alatas, A., Gao, L., Zhao, J., and Mao, H.-K. (2012) Sound velocities of Fe and Fe-Si alloy in the Earth’s core. Proceedings of the National Academy of Sciences, 109, 10239–10244.Google Scholar

  • Mitsui, T., Hirao, N., Ohishi, Y., Masuda, R., Nakamura, Y., Enoki, H., Sakai, K., and Seto, M. (2009) Development of an energy-domain 57Fe-Mössbauer spectrometer using synchrotron radiation and its application to ultrahigh-pressure studies with a diamond anvil cell. Journal of Synchrotron Radiation, 16, 723–729.Google Scholar

  • Ohishi, Y., Hirao, N., Sata, N., Hirose, K., and Takata, M. (2008) Highly intense monochromatic X‑ray diffraction facility for high-pressure research at SPring-8. High Pressure Research, 28(3), 163–173.Google Scholar

  • Ohtani, E., Shibazaki, Y., Sakai, T., Mibe, K., Fukui, H., Kamada, S., Sakamaki, T., Seto, Y., Tsutsui, S., and Baron, A.Q.R. (2013) Sound velocity of hexagonal close-packed iron up to core pressures. Geophysical Research Letters, 40, 5089–5094.Google Scholar

  • Ono, S. (2015) Relationship between structural variation and spin transition of iron under high pressures and high temperatures. Solid State Communications, 203, 1–4.Google Scholar

  • Ono, S., Kikegawa, T., Hirao, N., and Mibe, K. (2010) High-pressure magnetic transition in hcp-Fe. American Mineralogist, 95, 880–883.Google Scholar

  • Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. Journal of Applied Crystallography, 45, 329–331.Google Scholar

  • Ringwood, A.E. (1959) On the chemical evolution and densities of the planets. Geochimica et Cosmochimica Acta, 15, 257–283.Google Scholar

  • Rivoldini, A., Van Hoolst, T., and Verhoeven, O. (2009) The interior structure of Mercury and its core sulfur content. Icarus, 201, 12–30.Google Scholar

  • Rivoldini, A., Van Hoolst, T., Verhoeven, O., Mocquet, A., and Dehant, V. (2011) Geodesy constraints on the interior structure and composition of Mars. Icarus, 213, 451–472.Google Scholar

  • Sakai, T., Takahashi, S., Nishitani, N., Mashino, I., Ohtani, E., and Hirao, N. (2014) Equation of state of pure iron and Fe0.9Ni0.1 alloy up to 3 Mbar. Physics of Earth and Planetary Interiors, 228, 114–126.Google Scholar

  • Sakamaki, T., Ohtani, E., Fukui, H., Kamada, S., Takahashi, S., Sakairi, T., Takahata, A., Sakai, T., Tsutsui, S., Ishikawa, D., Shiraishi, R., Seto, Y., Tsuchiya, T., and Baron, A.Q.R. (2016) Constraints on Earth’s inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions. Science Advances, 2, e1500802.Google Scholar

  • Seto, Y., Hamane, D., Nagai, T., and Sata, N. (2010). Development of a software suite on X‑ray diffraction experiments. The Review of High Pressure Science and Technology, 20(3), 269–276 (in Japanese).Google Scholar

  • Tateno, S., Hirose, K., Ohishi, Y., and Tatsumi, Y. (2010) The structure of iron in Earth’s inner core. Science, 330, 359–361.Google Scholar

  • Tateno, S., Kuwayama, Y., Hirose, K., and Ohishi, Y. (2015) The structure of Fe-Si alloy in Earth’s inner core. Earth and Planetary Science Letters, 418, 11–19.Google Scholar

  • Takemura, K., Sahu, P.Ch., and Toma, Y. (2001) Versatile gas-loading system for diamond-anvil cells. Review of Scientific Instruments, 72, 3873–3876.Google Scholar

  • Uchida, T., Wang, Y., Rivers, M.L., Sutton, S.R. (2001) Stability field and thermal equation of state of e-iron determined by synchrotron X‑ray diffraction in a multianvil apparatus. Journal of Geophysical Research, 106(B10), 21799–21810.Google Scholar

  • Yamazaki, D., Ito, E., Yoshino, T., Yoneda, A., Guo, X., Zhang, B., Sun, W., Shimojuku, A., Tsujino, N., Kunimoto, T., Higo, Y., and Funakoshi, K. (2012) P-V-T equation of e-iron up to 80 GPa and 1900 K using the Kawai-type high pressure apparatus equipped with sintered diamond anvils. Geophysical Research Letters, 39, L20308.Google Scholar

About the article

Received: 2017-12-08

Accepted: 2018-08-14

Published Online: 2018-11-28

Published in Print: 2018-12-19

Citation Information: American Mineralogist, Volume 103, Issue 12, Pages 1959–1965, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2018-6425.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in