Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 103, Issue 2

Issues

Secular change in metamorphism and the onset of global plate tectonics

Michael Brown
  • Laboratory for Crustal Petrology, Department of Geology, University of Maryland, College Park, Maryland 20742, U.S.A
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tim Johnson
  • Department of Applied Geology, The Institute for Geoscience Research (TIGeR), Curtin University, Perth, Western Australia 6845, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-29 | DOI: https://doi.org/10.2138/am-2018-6166

Abstract

On the contemporary Earth, distinct plate tectonic settings are characterized by differences in heat flow that are recorded in metamorphic rocks as differences in apparent thermal gradients. In this study we compile thermal gradients [defined as temperature/pressure (T/P) at the metamorphic peak] and ages of metamorphism (defined as the timing of the metamorphic peak) for 456 localities from the Eoarchean to Cenozoic Eras to test the null hypothesis that thermal gradients of metamorphism through time did not vary outside of the range expected for each of these distinct plate tectonic settings. Based on thermal gradients, metamorphic rocks are classified into three natural groups: high dT/dP [>775 °C/GPa, mean ~1110 °C/GPa (n = 199) rates], intermediate dT/dP [775–375 °C/GPa, mean ~575 °C/GPa (n = 127)], and low dT/dP [<375 °C/GPa, mean ~255 °C/GPa (n = 130)] metamorphism. Plots of T, P, and T/P against age demonstrate the widespread occurrence of two contrasting types of metamorphism—high dT/dP and intermediate dT/dP—in the rock record by the Neoarchean, the widespread occurrence of low dT/dP metamorphism in the rock record by the end of the Neoproterozoic, and a maximum in the thermal gradients for high dT/dP metamorphism during the period 2.3 to 0.85 Ga. These observations falsify the null hypothesis and support the alternative hypothesis that changes in thermal gradients evident in the metamorphic rock record were related to changes in geodynamic regime. Based on the observed secular changes, we postulate that the Earth has evolved through three geodynamic cycles since the Mesoarchean and has just entered a fourth. Cycle I began with the widespread appearance of paired metamorphism in the rock record, which was coeval with the amalgamation of widely dispersed blocks of protocontinental lithosphere into supercratons, and was terminated by the progressive fragmentation of the supercratons into protocontinents during the Siderian–Rhyacian (2.5 to 2.05 Ga). Cycle II commenced with the progressive reamalgamation of these protocontinents into the supercontinent Columbia and extended until the breakup of the supercontinent Rodinia in the Tonian (1.0 to 0.72 Ga). Thermal gradients of high dT/dP metamorphism rose around 2.3 Ga leading to a thermal maximum in the mid-Mesoproterozoic, reflecting insulation of the mantle beneath the quasi-integral continental lithosphere of Columbia, prior to the geographical reorganization of Columbia into Rodinia. This cycle coincides with the age span of most anorogenic magmatism on Earth and a scarcity of passive margins in the geological record. Intriguingly, the volume of preserved continental crust of Mesoproterozoic age is low relative to the Paleoproterozoic and Neoproterozoic Eras. These features are consistent with a relatively stable association of continental lithosphere between the assembly of Columbia and the breakup of Rodinia. The transition to Cycle III during the Tonian is marked by a steep decline in the thermal gradients of high dT/dP metamorphism to their lowest value and the appearance of low dT/dP metamorphism in the rock record. Again, thermal gradients for high dT/dP metamorphism show a rise to a peak at the end of the Variscides during the formation of Pangea, before another steep decline associated with the breakup of Pangea and the start of a fourth cycle at ca. 0.175 Ga. Although the mechanism by which subduction started and plate boundaries evolved remains uncertain, based on the widespread record of paired metamorphism in the Neoarchean we posit that plate tectonics was established globally during the late Mesoarchean. During the Neoproterozoic there was a change to deep subduction and colder thermal gradients, features characteristic of the modern plate tectonic regime.

Keywords: P-T-age of metamorphism; thermal gradients; subduction; geodynamic cycles; blueschist; eclogite; Invited Centennial article; Review article

References cited

  • Abers, G.A., Nakajima, J., van Keken, P.E., Kita, S., and Hacker, B.R. (2013) Thermal–petrological controls on the location of earthquakes within subducting plates. Earth and Planetary Science Letters, 369, 178–187.Google Scholar

  • Baldwin, J.A., Bowring, S.A., Williams, M.L., and Williams, I.S. (2004) Eclogites of the Snowbird Tectonic Zone: Petrological and U-Pb geochronological evidence for Paleoproterozoic high-pressure metamorphism in the western Canadian Shield. Contributions to Mineralogy and Petrology, 147, 528–548.Google Scholar

  • Barry, T.L., Davies, J.H., Wolstencroft, M., Millar, I., Zhao, Z., Jian, P., Safonova, I., and Price, M. (2017) Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry. Scientific Reports, 7, 1870, .CrossrefGoogle Scholar

  • Bercovici, D., and Ricard, Y. (2014) Plate tectonics, damage and inheritance. Nature, 508, 513–516.Google Scholar

  • Bleeker, W. (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos, 71, 99–134.Google Scholar

  • Bradley, D.C. (2008) Passive margins through Earth history. Earth-Science Reviews, 91, 1–26.Google Scholar

  • Brown, M. (1998a) Unpairing metamorphic belts: P-T paths and a tectonic model for the Ryoke Belt, southwest Japan. Journal of Metamorphic Geology, 16, 3–22.Google Scholar

  • Brown, M. (1998b) Ridge-trench interactions and high-T–low-P metamorphism, with particular reference to the Cretaceous evolution of the Japanese Islands. In P.J. Treloar and P.J. O’Brien, Eds., What Drives Metamorphism and Metamorphic Reactions, 138, p. 131–163. Geological Society, London, Special Publications.Google Scholar

  • Brown, M. (2002) Plate margin processes and “paired” metamorphic belts in Japan. Comment on “Thermal effects of ridge subduction and its implication for the origin of granitic batholith and paired metamorphic belts” by H. Iwamori. Earth and Planetary Science Letters, 199, 483–492.Google Scholar

  • Brown, M. (2006) Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 34, 961–964.Google Scholar

  • Brown, M. (2007) Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review, 49, 193–234.Google Scholar

  • Brown, M. (2008) Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Earth history: When did Earth first adopt a plate tectonics mode of behavior? In K. Condie and V. Pease, Eds., When Did Plate Tectonics Begin?, 440, p. 97–128. Geological Society of America Special Paper.Google Scholar

  • Brown, M. (2009) Metamorphic patterns in orogenic systems and the geological record. In P.A. Cawood and A. Kröner, Eds., Accretionary Orogens in Space and Time, 318, p. 37–74. Geological Society, London, Special Publications.Google Scholar

  • Brown, M. (2010) Paired metamorphic belts revisited. Gondwana Research, 18, 46–59.Google Scholar

  • Brown, M. (2014) The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers, 5, 553–569.Google Scholar

  • Cawood, P.A., and Hawkesworth, C.J. (2014) Earth’s middle age. Geology, 42, 503–506.Google Scholar

  • Cawood, P.A., and Hawkesworth, C.J. (2015) Temporal relations between mineral deposits and global tectonic cycles. Geological Society, London, Special Publications, 393, pp. 9–21.Google Scholar

  • Cesare, B., and Gomez-Pugnaire, M.T. (2001) Crustal melting in the Alboran domain: Constraints from xenoliths of the Neogene Volcanic Province. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26, 255–260.Google Scholar

  • Chen, R.X., Zheng, Y.F., and Gong, B. (2011) Mineral hydrogen isotopes and water contents in ultrahigh-pressure metabasite and metagranite: constraints on fluid flow during continental subduction-zone metamorphism. Chemical Geology, 281, 103–124.Google Scholar

  • Chopin, C. (1984) Coesite and pure pyrope in high-grade blueschists of the western Alps; a first record and some consequences. Contributions to Mineralogy and Petrology, 86, 107–118.Google Scholar

  • Chopin, C. (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth and Planetary Science Letters, 212, 1–14.Google Scholar

  • Clark, C., Fitzsimons, I.C.W., Healy, D., and Harley, S.L. (2011) How does the continental crust get really hot? Elements, 7, 235–240.Google Scholar

  • Condie, K.C., and Aster, R.C. (2010) Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Research, 180, 227–236.Google Scholar

  • Condie, K.C., Bickford, M.E., Aster, R.C., Belousova, E., and Scholl, D.W. (2011) Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geological Society of America Bulletin, 123, 951–957.Google Scholar

  • Condie, K.C., Aster, R.C., and van Hunen, J. (2016) A great thermal divergence in the mantle beginning 2.5 Ga: Geochemical constraints from greenstone basalts and komatiites. Geoscience Frontiers, 7, 543–553.Google Scholar

  • Cox, G.M., Halverson, G.P., Stevenson, R.K., Vokaty, M., Poirier, A., Kunzmann, M., Li, Z-X., Denyszyn, S.W., Strauss, J.V., and Macdonald, F.A. (2016) Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 446, 89–99.Google Scholar

  • Dabrowski, M., Powell, R., and Podladchikov, Y. (2015) Viscous relaxation of grain-scale pressure variations. Journal of Metamorphic Geology, 33, 859–868.Google Scholar

  • Davies, G.F. (2006) Gravitational depletion of the early Earth’s upper mantle and the viability of early plate tectonics. Earth and Planetary Science Letters, 243, 376–382.Google Scholar

  • de Roever, W.P. (1956) Some differences between post-Paleozoic and older regional metamorphism. Geologie en Mijnbouw, 18, 123–127.Google Scholar

  • de Roever, W.P. (1965) On the cause of the preferential distribution of certain metamorphic minerals in orogenic belts of different age. Geologische Rundschau, 54, 933–943.Google Scholar

  • Dewey, J.F. (1988) Extensional collapse of orogens. Tectonics, 7, 1123–1139.Google Scholar

  • Dhuime, B., Hawkesworth, C.J., Cawood, P.A., and Storey, C.D. (2012) A change in the geodynamics of continental growth 3 billion years ago. Science, 335, 1334–1336.Google Scholar

  • Dhuime, B., Wuestefeld, A., and Hawkesworth, C.J. (2015) Emergence of modern continental crust about 3 billion years ago. Nature Geoscience, 8, 552–555.Google Scholar

  • Dobrzhinetskaya, L.F. (2012) Microdiamonds—Frontier of ultrahigh-pressure metamorphism: A review. Gondwana Research, 21, 207–223.Google Scholar

  • Dokukina, K.A., Kaulina, T.V., Konilov, A.N., Mints, M.V., Van, K.V., Natapov, L., Belousova, E., Simakin, S.G., and Lepekhina, E.N. (2014) Archaean to Palaeoproterozoic high-grade evolution of the Belomorian eclogite province in the Gridino area, Fennoscandian Shield: geochronological evidence. Gondwana Research, 25, 585–613.Google Scholar

  • Dumond, G., Goncalves, P., Williams, M.L., and Jercinovic, M.J. (2015) Monazite as a monitor of melting, garnet growth and feldspar recrystallization in continental lower crust. Journal of Metamorphic Geology, 33, 735–762.Google Scholar

  • Dumond, G., Williams, M.L., Baldwin, J.A., and Jercinovic, M.J. (2017) Backarc origin for Neoarchean ultrahigh-temperature metamorphism, eclogitization, and orogenic root growth. Geology, 45, 943–946.Google Scholar

  • Dunlap, W.J. (2000) Nature’s diffusion experiment: the cooling-rate cooling-age correlation. Geology, 28, 139–142.Google Scholar

  • Ellis, D.J., Sheraton, J.W., England, R.N., and Dallwitz W.B. (1980) Osumilite–sapphirine–quartz granulites from Enderby Land, Antarctica—mineral assemblages and reactions. Contributions to Mineralogy and Petrology, 72, 123–143.Google Scholar

  • Ernst, W.G. (1971) Metamorphic zonations on presumably subducted lithospheric plates from Japan, California and the Alps. Contributions to Mineralogy and Petrology, 34, 43–59.Google Scholar

  • Ernst, W.G. (1972) Occurrence and mineralogic evolution of blueschist belts with time. American Journal of Science, 272, 657–668.Google Scholar

  • Ernst, W.G. (1973) Blueschist metamorphism and P-T regimes in active subduction zones. Tectonophysics, 17, 255–272.Google Scholar

  • Ernst, R.E., and Bleeker, W. (2010) Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the present. Canadian Journal of Earth Sciences, 47, 695–739.Google Scholar

  • Ernst, R.E., Bleeker, W., Söderlund, U., and Kerr, A.C. (2013) Large Igneous Provinces and supercontinents: Toward completing the plate tectonic revolution. Lithos, 174, 1–14.Google Scholar

  • Evans, D.A.D. (2013) Reconstructing pre-Pangean supercontinents. Geological Society of America Bulletin, 125, 1735–1751.Google Scholar

  • Ferri, F., Burlini, L., Cesare, B., and Sassi, R. (2007) Seismic properties of lower crustal xenoliths from El Hoyazo (SE Spain): Experimental evidence up to partial melting. Earth and Planetary Science Letters, 253, 239–253.Google Scholar

  • Fischer, R., and Gerya, T. (2016) Regimes of subduction and lithospheric dynamics in the Precambrian: 3D thermomechanical modeling. Gondwana Research, 37, 53–70.Google Scholar

  • Galli, A., Le Bayon, B., Schmidt, M.W., Burg, J.P., Caddick, M.J., and Reusser, E. (2011) Granulites and charnockites of the Gruf Complex: Evidence for Permian ultra-high temperature metamorphism in the Central Alps. Lithos, 124, 17–45.Google Scholar

  • Galli, A., Le Bayon, B., Schmidt, M.W., Burg, J.P., Reusser, E., Sergeev, S.A., and Larionov, A. (2012) U-Pb zircon dating of the Gruf Complex: disclosing the late Variscan granulitic lower crust of Europe stranded in the Central Alps. Contributions to Mineralogy and Petrology, 163, 353–378.Google Scholar

  • Ganne, J., and Feng, X. (2017) Primary magmas and mantle temperatures through time. Geochemistry, Geophysics, Geosystems, 18, 872–888.Google Scholar

  • Gardiner, N.J., Kirkland, C.L., and Van Kranendonk, M.J. (2016) The juvenile hafnium isotope signal as a record of supercontinent cycles. Scientific Reports, 6, 38503, .CrossrefGoogle Scholar

  • Gerya, T. (2014) Precambrian geodynamics: concepts and models. Gondwana Research, 25, 442–463.Google Scholar

  • Gerya, T. (2015) Tectonic overpressure and underpressure in lithospheric tectonics and metamorphism. Journal of Metamorphic Geology, 33, 785–800.Google Scholar

  • Gerya, T.V., Connolly, J.A.D., and Yuen, D.A. (2008) Why is terrestrial subduction one-sided? Geology, 36, 43–46.Google Scholar

  • Gerya, T.V., Stern, R.J., Sobolev, S.V., and Whattam, S.A. (2015) Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527, 221–225.Google Scholar

  • Glassley, W.E., Korstgard, J.A., Sorensen, K., and Platou, S.W. (2014) A new UHP metamorphic complex in the ~1.8 Ga Nagssugtoqidian Orogen of West Greenland. American Mineralogist, 99, 1315–1334.Google Scholar

  • Godard, G. (2001) Eclogites and their geodynamic interpretation: a history. Journal of Geodynamics, 32, 165–203.Google Scholar

  • Goldfarb, R.J., Bradley, D., and Leach, D.L. (2010) Secular variation in economic geology. Economic Geology, 105, 459–465.Google Scholar

  • Grambling, J.A. (1975) Pressures and temperatures in Precambrian metamorphic rocks. Earth and Planetary Science Letters, 53, 63–68.Google Scholar

  • Green, H.W. II, and Burnley, P.C. (1989) A low self-organizing mechanism for deep-focus earthquakes. Nature, 341, 733–737.Google Scholar

  • Gregoire, M., Mattielli, N., Nicollet, C., Cottin, J.Y., Leyrit, H., Weis, D., Shimizu, N., and Giret, A. (1994) Oceanic mafic granulite xenoliths from the Kerguelen archipelago. Nature, 367, 360–363.Google Scholar

  • Griffin, W.L., Belousova, E.A., O’Neill, C., O’Reilly, S.Y., Malkovets, V., Pearson, N.J., Spetsius, S., and Wilde, S.A. (2013) The world turns over: Hadean–Archean crust–mantle evolution. Lithos, 189, 2–15.Google Scholar

  • Griffin, W.L., Afonso, J.C., Belousova, E.A., Gain, S.E., Gong, X.-H., González-Jiménez, J.M., Howell, D., Huang, J.-X., McGowan, N., Pearson, N.J., and others. (2016) Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. Journal of Petrology, 57, 655–684.Google Scholar

  • Guevara, V.E., and Caddick, M.J. (2016) Shooting at a moving target: phase equilibria modelling of high-temperature metamorphism. Journal of Metamorphic Geology, 34, 209–235.Google Scholar

  • Hacker, B.R., Peacock, S.M., Abers, G.A., and Holloway, S.D. (2003) Subduction factory—2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research: Solid Earth, 108, 2030.Google Scholar

  • Harley, S.L. (1998) On the occurrence and characterisation of ultrahigh-temperature (UHT) crustal metamorphism. In P.J. Treloar and P.J. O’Brien, Eds., What Drives Metamorphism and Metamorphic Reactions?, 138, 75–101, Geological Society, London, Special Publication.Google Scholar

  • Harley, S.L. (2008) Refining the P-T records of UHT crustal metamorphism. Journal of Metamorphic Geology, 26, 125–154.Google Scholar

  • Hawkesworth, C.J., Cawood, P.A., Kemp, A., Storey, C., and Dhuime, B. (2009) A matter of preservation. Science, 323, 49–50.Google Scholar

  • Hawkesworth, C.J., Cawood, P.A., and Dhuime, B. (2016) Tectonics and crustal evolution. GSA Today, 26, 9, .CrossrefGoogle Scholar

  • Hayob, J.L., Essene, E.J., Ruiz, J., Ortega-Gutiérrez, F., and Aranda-Gómez, J.J. (1989) Young high-temperature granulites from the base of the crust in central Mexico. Nature, 342, 265–268.Google Scholar

  • Herwartz, D., Skublov, S.G., Berezin, A.V., and Mel’nik, A.E. (2012) First Lu–Hf garnet ages of eclogites from the Belomorian mobile belt (Baltic Shield, Russia). Doklady Earth Sciences, 443, 377–380.Google Scholar

  • Herzberg, C. (2016) Petrological evidence from Komatiites for an early Earth carbon and water cycle. Journal of Petrology, 57, 2271–2288.Google Scholar

  • Herzberg, C., Asimow, P.D., Arndt, N., Niu, Y., Lesher, C.M., Fitton, J.G., Cheadle, M.J., and Saunders, A.D. (2007) Temperatures in ambient mantle and plumes: constraints from basalts, picrites and komatiites. Geochemistry, Geophysics, Geosystems, 8, Q02006.Google Scholar

  • Herzberg, C., Condie, K., and Korenaga, J. (2010) Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 292, 79–88.Google Scholar

  • Hobbs, B.E., and Ord, A. (2016) Does non-hydrostatic stress influence the equilibrium of metamorphic reactions? Earth-Science Reviews, 163, 190–233.Google Scholar

  • Hobbs, B.E., and Ord, A. (2017) Pressure and equilibrium in deforming rocks. Journal of Metamorphic Geology, 35, 967–982.Google Scholar

  • Holland, H.D. (2006) The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B, 361, 903–915.Google Scholar

  • Horsfall, C. (2009) 40Ar/39Ar laser probe dating of prograde metamorphism. Ph.D. thesis, University of Manchester, U.K.Google Scholar

  • Hyndman, R.D. (2015) Tectonic consequences of a uniformly hot backarc and why is the Cordilleran mountain belt high? Geoscience Canada, 42, 383–402.Google Scholar

  • Hyndman, R.D., Currie, C.A., and Mazzotti, S.P. (2005) Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today, 15, 4–10.Google Scholar

  • Incel, S., Hilairet, N., Labrousse, L., John, T., Deldicque, D., Ferrand, T., Wang, Y., Renner, J., Morales, L., and Schubnel, A. (2017) Laboratory earthquakes triggered during eclogitization of lawsonite-bearing blueschist. Earth and Planetary Science Letters, 459, 320–331.Google Scholar

  • Isacks, B., Oliver, J., and Sykes (1968) Seismology and new global tectonics. Journal of Geophysical Research, 73, 5855–5899.Google Scholar

  • Jackson, J., McKenzie, D., Priestley, K., and Emmerson, B. (2008) New views on the structure and rheology of the lithosphere. Journal of the Geological Society, 165, 453–465.Google Scholar

  • Jaupart, C., Mareschal, J.-C., and Iarotsky, L. (2016) Radiogenic heat production in the continental crust. Lithos, 262, 398–427.Google Scholar

  • John, T., Medvedev, S., Rüpke, L.H., Andersen, T.B., Podladchikov, Y.Y., and Austrheim, H. (2009) Generation of intermediate-depth earthquakes by self-localizing thermal runaway. Nature Geoscience, 2, 137–140.Google Scholar

  • Johnson, T.E., Brown, M., Kaus, B., and VanTongeren, J.A. (2014) Delamination and recycling of Archaean crust caused by gravitational instabilities. Nature Geoscience, 7, 47–52.Google Scholar

  • Johnson, T.E., Kirkland, C.L., Reddy, S.M., and Fischer, S. (2015) Grampian migmatites in the Buchan Block, NE Scotland. Journal of Metamorphic Geology, 33, 695–709.Google Scholar

  • Johnson, T.E., Brown, M., Gardiner, N.J., Kirkland, C.L., and Smithies, R.H. (2017) Earth’s first stable continents did not form by subduction. Nature, 543, 239–243.Google Scholar

  • Jull, M., and Kelemen, P.B. (2001) On the conditions for lower crustal convective instability. Journal of Geophysical Research: Solid Earth, 106, 6423–6446.Google Scholar

  • Kadarusman, J., Maruyama, S., Kaneko, Y., Ota, T., Ishikawa, A., Sopaheluwakan, J., and Omori, S. (2010) World’s youngest blueschist belt from Leti Island in the non-volcanic Banda outer arc of Eastern Indonesia. Gondwana Research, 18, 189–204.Google Scholar

  • Katayama, I., and Maruyama, S. (2009) Inclusion study in zircon from ultrahigh-pressure metamorphic rocks in the Kokchetav massif: an excellent tracer of metamorphic history. Journal of the Geological Society, 166, 783–796.Google Scholar

  • Kaulina, T.V., Yapaskurt, V.O., Presnyakov, S.L., Savchenko, E.E., and Simakin, S.G. (2010) Metamorphic evolution of the Archean eclogite-like rocks of the Shirokaya and Uzkaya Salma area (Kola Peninsula): Geochemical features of zircon, composition of inclusions, and age. Geochemistry International, 48, 871–890.Google Scholar

  • Kelsey, D.E., and Hand, M. (2014) On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers, 6, 311–356.Google Scholar

  • Kirby, S.H., Durham, W.B., and Stern, L.A. (1991) Mantle phase changes and deep earthquake faulting in subducting lithosphere. Science, 252, 216–225.Google Scholar

  • Kirby, S.H., Stein, S., Okal, E.A., and Rubie, D.C. (1996) Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics, 34, 261–306.Google Scholar

  • Kohn, M.J. (2016) Metamorphic chronology—a tool for all ages: Past achievements and future prospects. American Mineralogist, 101, 25–42.Google Scholar

  • Kohn, M.J., Corrie, S.L., and Markley, C. (2015) The fall and rise of metamorphic zircon. American Mineralogist, 100, 897–908.Google Scholar

  • Korenaga, J. (2008) Urey ratio and the structure and evolution of Earth’s mantle. Reviews of Geophysics, 46, RG2007, .CrossrefGoogle Scholar

  • Korenaga, J. (2013) Initiation and evolution of plate tectonics on Earth: theories and observations. Annual Review of Earth and Planetary Sciences, 41, 117–151.Google Scholar

  • Korhonen, F.J., Clark, C., Brown, M., and Taylor, R. (2014) Taking the temperature of Earth’s hottest crust. Earth and Planetary Science Letters, 408, 341–354.Google Scholar

  • Kylander-Clark, A.R., Hacker, B.R., and Cottle, J.M. (2013) Laser-ablation split-stream ICP petrochronology. Chemical Geology, 345, 99–112.Google Scholar

  • Labrosse, S., and Jaupart, C. (2007) Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics. Earth and Planetary Science Letters, 260, 465–481.Google Scholar

  • Li, S.H., Unsworth, M.J., Booker, J.R., Wei, W.B., Tan, H.D., and Jones, A.G. (2003) Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophysical Journal International, 153, 289–304.Google Scholar

  • Li, X., Zhang, L., Wei, C., and Slabunov, A.I. (2015) Metamorphic PT path and zircon U–Pb dating of Archean eclogite association in Gridino complex, Belomorian province, Russia. Precambrian Research, 268, 74–96.Google Scholar

  • Li, X., Yu, H.L., Zhang, L., Wei, C., and Bader, T. (2017a) 1.9 Ga eclogite from the Archean-Paleoproterozoic Belomorian Province, Russia. Science Bulletin, 62, 239–241.Google Scholar

  • Li, X., Zhang, L., Wei, C., Slabunov, A.I., and Bader, T. (2017b) Neoarchean–Paleoproterozoic granulite-facies metamorphism in Uzkaya Salma eclogite-bearing mélange, Belomorian Province (Russia). Precambrian Research, 294, 257–283.Google Scholar

  • Liati, A., and Gebauer, D. (2003) Geochronological constraints of the time of metamorphism in the Gruf Complex (central Alps) and implications for the Adula-Cima Lunga Nappe system: Schweizerische Mineralogische und Petrographische Mitteilungen, 83, 159–172.Google Scholar

  • Liou, J.G., Maruyama, S., Wang, X., and Graham, S. (1990) Precambrian blueschist terranes of the world. Tectonophysics, 181, 97–111.Google Scholar

  • Liou, J.G., Tsujimori, T., Yang, J.S., Zhang, R.Y., and Ernst, W.G. (2014) Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: A review. Journal of Asian Earth Sciences, 96, 386–420.Google Scholar

  • Liu, F.L., and Liou, J.G. (2011) Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie–Sulu UHP rocks. Journal of Asian Earth Sciences, 40, 1–39.Google Scholar

  • Liu, L., Zhang, J.-F., Green, H.W. II, Jin, Z.-M., and Bozhilov, K.N. (2007) Evidence of former stishovite in metamorphosed sediments, implying subduction to > 350 km. Earth and Planetary Science Letters, 263, 180–191.Google Scholar

  • Liu, F., Zhang, L., Li, X., Slabunov, A.I., Wei, C., and Bader, T. (2017) The metamorphic evolution of Paleoproterozoic eclogites in Kuru-Vaara, northern Belomorian Province, Russia: Constraints from P-T pseudosections and zircon dating. Precambrian Research, 289, 31–47.Google Scholar

  • Lucassen, F., and Franz, G. (1996) Magmatic arc metamorphism: Petrology and temperature history of metabasic rocks in the Coastal Cordillera of northern Chile. Journal of Metamorphic Geology, 14, 249–265.Google Scholar

  • Maekawa, H., Shozui, M., Ishii, T., Fryer, P., and Pearce, J.A. (1993) Blueschist metamorphism in an active subduction zone. Nature, 364, 520–523.Google Scholar

  • Maggi, A., Jackson, J., McKenzie, D., and Priestley, K. (2000) Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28, 495–498.Google Scholar

  • Mancktelow, N.S. (1995) Nonlithostatic pressure during sediment subduction and the development and exhumation of high-pressure metamorphic rocks. Journal of Geophysical Research: Solid Earth, 100, 571–583.Google Scholar

  • Mancktelow, N.S. (2008) Tectonic pressure: Theoretical concepts and modelled examples. Lithos, 103, 149–177.Google Scholar

  • Maruyama, S., and Liou, J.G. (1998) Initiation of ultrahigh-pressure metamorphism and its significance on the Proterozoic–Phanerozoic boundary. The Island Arc, 7, 6–35.Google Scholar

  • Maruyama, S., and Liou, J.G. (2005) From snowball to Phanerozoic Earth: International Geology Review, 47, 775–791.Google Scholar

  • Maruyama, S., Liou, J.G., and Terabayashi, M. (1996) Blueschists and eclogites of the world and their exhumation. International Geology Review, 38, 490–596.Google Scholar

  • McCuaig, T.C., and Kerrich, R. (1998) P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geology Reviews, 12, 381–453.Google Scholar

  • Meert, J.G. (2014) Strange attractors, spiritual interlopers and lonely wanderers: the search for pre-Pangean supercontinents. Geoscience Frontiers, 5, 155–166.Google Scholar

  • Merdith, A.S., Collins, A.S., Williams, S.E., Pisarevsky, S., Foden, J.D., Archibald, D.B., Blades, M.L., Alessio, B.L., Armistead, S., Plavsa, D., Clark, C., and Müller, R.D. (2017) A full-plate global reconstruction of the Neoproterozoic. Gondwana Research, 50, 84–134.Google Scholar

  • Mints, M.V., Belousova, E.A., Konilov, A.N., Natapov, L.M., Shchipansky, A.A., Griffin, W.L., O’Reilly, S.Y., Dokukina, K.A., and Kaulina, T.V. (2010) Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia. Geology, 38, 739–742.Google Scholar

  • Miyashiro, A. (1961) Evolution of metamorphic belts. Journal of Petrology, 2, 277–311.Google Scholar

  • Miyashiro, A. (1973) Paired and unpaired metamorphic belts. Tectonophysics, 17, 241–254.Google Scholar

  • Nicoli, G., Moyen, J.F., and Stevens, G. (2016) Diversity of burial rates in convergent settings decreased as Earth aged. Scientific Reports, 6, 26359, .CrossrefGoogle Scholar

  • Ohuchi, T., Lei, X.L., Ohfuji, H., Higo, Y., Tange, Y., Sakai, T., Fujino, K., and Irifune, T. (2017) Intermediate-depth earthquakes linked to localized heating in dunite and harzbuigite. Nature Geoscience, 10, 771–776.Google Scholar

  • Okazaki, K., and Hirth, G. (2016) Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust. Nature, 530, 81–85.Google Scholar

  • O’Neill, C., and Debaille, V. (2014) The evolution of Hadean–Eoarchaean geodynamics. Earth and Planetary Science Letters, 406, 49–58.Google Scholar

  • Oxburgh, E.R. (1990) Some thermal aspects of granulite history. In D. Vielzeuf and Ph. Vidal, Eds, Granulites and Crustal Evolution, p. 569–580. Kluwer, The Netherlands.Google Scholar

  • Oxburgh, E.R., and Turcotte, D.L. (1970) Thermal structure of island arcs. Geological Society of America Bulletin, 81, 1665–1688.Google Scholar

  • Oxburgh, E.R., and Turcotte, D.L. (1971) Origin of paired metamorphic belts and crustal dilation in island arc regions. Journal of Geophysical Research, 76, 1315–1327.Google Scholar

  • Palin, R.M., and White, R.W. (2016) Emergence of blueschists on Earth linked to secular changes in oceanic crust composition. Nature Geoscience, 9, 60–64.Google Scholar

  • Parnell, J., Hole, M., Boyce, A.J., Spinks, S., and Bowden, S. (2012) Heavy metal, sex and granites: Crustal differentiation and bioavailability in the mid-Proterozoic. Geology, 40, 751–754.Google Scholar

  • Perkins, D. III, and Newton, R.C. (1981) Charnockite geobarometers based on coexisting garnet–pyroxene–plagioclase–quartz. Nature, 292, 144–146.Google Scholar

  • Pisarevsky, S.A., Elming, S.Å., Pesonen, L.J., and Li, Z.X. (2014) Mesoproterozoic paleogeography: supercontinent and beyond. Precambrian Research, 244, 207–225.Google Scholar

  • Powell, R., and Holland, T.J.B. (2008) On thermobarometry. Journal of Metamorphic Geology, 26, 155–179.Google Scholar

  • Powell, R., Guiraud, M., and White, R.W. (2005) Truth and beauty in metamorphic phase equilibria: conjugate variables and phase diagrams. Canadian Mineralogist, 43, 21–33.Google Scholar

  • Puetz, S.J., Ganade, C.E., Zimmermann, U., and Borchardt, G. (2018) Statistical analyses of Global U-Pb Database 2017. Geoscience Frontiers, 9, 121–145.Google Scholar

  • Putirka, K. (2016) Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric–ferrous ratios, olivine–liquid Fe-Mg exchange, and mantle potential temperature. American Mineralogist, 101, 819–840.Google Scholar

  • Reddy, S.M., Kelley, S.P., and Magennis, L. (1997) A microstructural and argon laserprobe study of shear zone development at the western margin of the Nanga Parbat-Haramosh Massif, western Himalaya. Contributions to Mineralogy and Petrology, 128, 16–29.Google Scholar

  • Reuber, G., Kaus, B.J.P, Schmalholz, S.M., and White, R.W. (2016) Nonlithostatic pressure during subduction and collision and the formation of (ultra)high-pressure rocks. Geology, 44, 343–346.Google Scholar

  • Roberts, N.M.W. (2013) The boring billion? Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geoscience Frontiers, 4, 681–691.Google Scholar

  • Roberts, N.M.W, Slagstad, T., and Viola, G. (2015) The structural, metamorphic and magmatic evolution of Mesoproterozoic orogens. Precambrian Research, 265, 1–9.Google Scholar

  • Rondenay, S., Abers, G.A., and vanKeken, P.E. (2008) Seismic imaging of subduction zone metamorphism. Geology, 36, 275–278.Google Scholar

  • Rubatto, D., and Hermann, J. (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241, 38–61.Google Scholar

  • Scherer, E.E., Cameron, K.L., Johnson, C.M., Beard, B.L., Barovich, K.M., and Collerson, K.D. (1997) Lu-Hf geochronology applied to dating Cenozoic events affecting lower crustal xenoliths from Kilbourne Hole, New Mexico. Chemical Geology, 142, 63–78.Google Scholar

  • Schilling, F.R., and Partzsch, G.M. (2001) Quantifying partial melt fraction in the crust beneath the central Andes and the Tibetan plateau. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26, 239–246.Google Scholar

  • Schmitz, S., Möller, A., Wilke, M., Malzer, W., Kannigiesser, B., Bousquet, R., Berger, A., and Schefer, S. (2009) Chemical U-Th-Pb dating of monazite by 3D-Micro X-ray fluorescence analysis with synchrotron radiation. European Journal of Mineralogy, 21, 927–945.Google Scholar

  • Scibiorski, E., Tohver, E., and Jourdan, F. (2015) Rapid cooling and exhumation in the western part of theMesoproterozoic Albany-Fraser Orogen, Western Australia. Precambrian Research, 265, 232–248.Google Scholar

  • Silver, P.G., and Behn, M.D. (2008) Intermittent plate tectonics? Science, 319, 85–88.Google Scholar

  • Sizova, E., Gerya, T., Brown, M., and Perchuk, L.L. (2010) Subduction styles in the Precambrian: insight from numerical experiments. Lithos, 116, 209–229.Google Scholar

  • Sizova, E., Gerya, T., and Brown, M. (2014) Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Research, 25, 522–545.Google Scholar

  • Sizova, E., Gerya, T., Stüwe, K., and Brown, M. (2015) Generation of felsic crust in the Archean: A geodynamic modeling perspective. Precambrian Research, 27, 198–224.Google Scholar

  • Sizova, E., Gerya, T., Brown, M., and Stüwe, K. (2017) What drives metamorphism in early Archean greenstone belts? Insights from numerical modeling. Tectonophysics, in press, http://dx.doi.org/10.1016/j.tecto.2017.07.020.

  • Skublov, S.G., Astaf’ev, B.Y., Marin, Y.B., Berezin, A.V., Mel’nik, A.E., and Presnyakov, S.L. (2011a) New data on the age of eclogites from the Belomorian mobile belt at Gridino settlement area. Doklady Earth Sciences, 439, 1163–1170.Google Scholar

  • Skublov, S.G., Berezin, A.V., and Mel’nik, A.E. (2011b) Paleoproterozoic eclogites in the Salma area, Northwestern Belomorian Mobile Belt: composition and isotopic geochronologic characteristics of minerals and metamorphic age. Petrology, 19, 470–495.Google Scholar

  • Sloan, R.A., Jackson, J.A., McKenzie, D., and Priestley, K. (2011) Earthquake depth distributions in central Asia, and their relations with lithosphere thickness, shortening and extension. Geophysical Journal International, 185, 1–29.Google Scholar

  • Smith, D.C. (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310, 641–644.Google Scholar

  • Stampfli, G.M., Hochard, C., Vérard, C., Wilhem, C., and von Raumer, J. (2013) The formation of Pangea. Tectonophysics, 593, 1–19.Google Scholar

  • Stern, R.J. (2002) Subduction zones. Reviews of Geophysics, 40, 1012, .CrossrefGoogle Scholar

  • Stern, R.J. (2005) Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33, 557–560.Google Scholar

  • Syracuse, E.M., van Keken, P.E., and Abers, G.A. (2010) The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183, 73–90.Google Scholar

  • Tajcmanová, L., Vrijmoed, J., and Moulas, E. (2015) Grain-scale pressure variations in metamorphic rocks: implications for the interpretation of petrographic observations. Lithos, 216–217, 338–351.Google Scholar

  • Tang, M., Chen, K., and Rudnick, R.L. (2016) Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351, 372–375.Google Scholar

  • Taylor, R.J.M., Harley, S.L., Hinton, R.W., Elphick, S., Clark, C., and Kelly, N.M. (2015) Experimental determination of REE partition coefficients between zircon, garnet and melt: a key to understanding high-temperature crustal processes. Journal of Metamorphic Geology, 33, 231–248.Google Scholar

  • Taylor, R.J.M., Kirkland, C.L., and Clark, C. (2016) Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes. Lithos, 264, 239–257.Google Scholar

  • Taylor, R.J.M., Clark, C., Harley, S.L., Kylander-Clark, A.R.C., Hacker, B.R., and Kinny, P.D. (2017) Interpreting granulite facies events through rare earth element partitioning arrays. Journal of Metamorphic Geology, 35, 759–775.Google Scholar

  • Tomkins, A.G. (2010) Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis. Geochimica et Cosmochimica Acta, 74, 3246–3259.Google Scholar

  • Toussaint, G., Burov, E., and Jolivet, L. (2004) Continental plate collision: Unstable vs. stable slab dynamics. Geology, 32, 33–36.Google Scholar

  • Tsujimori, T., and Ernst, W.G. (2014) Lawsonite blueschists and lawsonite eclogites as proxies for palaeo-subduction zone processes: a review. Journal of Metamorphic Geology, 32, 437–454.Google Scholar

  • Tsujimori, T., Sisson, V.B., Liou, J.G., Harlow, G.E., and Sorensen, S.S. (2006) Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites. Lithos, 92, 609–624.Google Scholar

  • Turcotte, D.L., and Schubert, G. (2002) Geodynamics, 456 p. Cambridge University Press, New York.Google Scholar

  • van Hunen, J., and Moyen, J.-F. (2012) Archean subduction: fact or fiction? Annual Review of Earth and Planetary Sciences, 40, 195–219.Google Scholar

  • van Hunen, J., and van den Berg, A. (2008) Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos, 103, 217–235.Google Scholar

  • van Keken, P.E., Kita, S., and Nakajima, J. (2012) Thermal structure and intermediate-depth seismicity in the Tohoku-Hokkaido subduction zones. Solid Earth, 3, 355–364.Google Scholar

  • Voice, P.J., Kowalewski, M., and Eriksson, K.A. (2011) Quantifying the timing and rate of crustal evolution: Global compilation of radiometrically dated detrital zircon grains. The Journal of Geology, 119, 109–126.Google Scholar

  • Wang, S.-J., Wang, L., Brown, M., Piccoli, P.M., Johnson, T.E., Feng, P., Deng, H., Kitajima, K., and Huang, Y. (2017) Fluid generation and evolution during exhumation of deeply subducted UHP continental crust: Petrogenesis of composite granite–quartz veins in the Sulu belt, China. Journal of Metamorphic Geology, .CrossrefGoogle Scholar

  • Weller, O.M., and St-Onge, M.R. (2017) Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen. Nature Geoscience, 10, 305–311.Google Scholar

  • Wheeler, J. (2014) Dramatic effects of stress on metamorphic reactions. Geology, 42, 647–650.Google Scholar

  • Willigers, B.J.A., van Gool, J.A.M., Wijbrans, J.R., Krogstad, E.J., and Mezger, K. (2002) Posttectonic cooling of the Nagssugtoqidian orogen and a comparison of contrasting cooling histories in Precambrian and Phanerozoic orogens. The Journal of Geology, 110, 503–517.Google Scholar

  • Wilson, J.T. (1965) A new class of faults and their bearing on continental drift. Nature, 207, 343–347.Google Scholar

  • Yakymchuk, C., and Brown, M. (2014) The behavior of zircon and monazite during open system melting. Journal of the Geological Society of London, 171, 465–479.Google Scholar

  • Ye, K., Cong, B.L., and Ye, D.N. (2000) The possible subduction of continental material to depths greater than 200 km. Nature, 407, 734–736.Google Scholar

  • Young, D.J., and Kylander-Clark, A.R.C. (2015) Does continental crust transform during eclogite facies metamorphism? Journal of Metamorphic Geology, 33, 331–357.Google Scholar

  • Zheng, Y.F. (2009) Fluid regime in continental subduction zones: petrological insights from ultrahigh-pressure metamorphic rocks. Journal of the Geological Society, 166, 763–782.Google Scholar

  • Zhong, R., Brugger, J., Tomkins, A.G., Chen, Y.J., and Li, W.B. (2015) Fate of gold and base metals during metamorphic devolatilization of a pelite. Geochimica et Cosmochimica Acta, 171, 338–352.Google Scholar

About the article

Received: 2017-04-21

Accepted: 2017-11-02

Published Online: 2018-01-29

Published in Print: 2018-02-23


Citation Information: American Mineralogist, Volume 103, Issue 2, Pages 181–196, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2018-6166.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in