Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 103, Issue 2

Issues

Tourmaline crystal chemistry

Ferdinando Bosi
Published Online: 2018-01-29 | DOI: https://doi.org/10.2138/am-2018-6289

Abstract

Tourmalines form the most important boron rock-forming minerals on Earth. They belong to the cyclosilicates with a structure that may be regarded as a three-dimensional framework of octahedra ZO6 that encompass columns of structural “islands” made of XO9, YO6, BO3, and TO4 polyhedra. The overall structure of tourmaline is a result of short-range and long-range constraints resulting, respectively on the charge and size of ions. In this study, published data are reviewed and analyzed to achieve a synthesis of relevant experimental results and to construct a crystal-chemical model for describing tourmalines and their compositional miscibility over different length scales. Order-disorder substitution reactions involving cations and anions are controlled by short-range structural constraints, whereas order-disorder intracrystalline reaction involving only cations are controlled by long-range structural constraints. The chemical affinity of a certain cation to a specific structural site of the tourmaline structure has been established on the basis of structural data and crystal-chemical considerations. This has direct implications for the tourmaline nomenclature, as well as on petrogenetic and provenance information. Some assumptions behind the classification scheme of tourmaline have been reformulated, revealing major agreement and significant improvements compared to earlier proposed scheme.

Keywords: Tourmaline; order-disorder; crystal structure; nomenclature

References cited

  • Akizuki, M., Kuribayashi, T., Nagase, T., and Kitakaze, A. (2001) Triclinic liddicoatite and elbaite in growth sectors of tourmaline from Madagascar. American Mineralogist, 86, 364–369.Google Scholar

  • Bačik, P., Cempírek, J., Uher, P., Novák, M., Ozdín, D., Filip, J., Škoda, R., Breiter, K., Klementová, M., and Ďud’a, R. (2013) Oxy-schorl, Na(Fe22+Al) Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice, Czech Republic. American Mineralogist, 98, 485–492.Google Scholar

  • Bačik, P., Ertl, A., Števko, M., Giester, G., and Sečkar, P. (2015) Acicular zoned tourmaline (magnesio-foitite to foitite) from a quartz vein near Tisovec, Slovakia: the relationship between crystal chemistry and acicular habit. Canadian Mineralogist, 53, 221–234.Google Scholar

  • Berryman, E.J., Wunder, B., Ertl, A., Koch-Müller, M., Rhede, D., Scheidl, K., Giester, G., and Heinrich, W. (2016) Influence of the X-site composition on tourmaline’s crystal structure: Investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy. Physics and Chemistry of Minerals, 43, 83–102.Google Scholar

  • Bosi, F. (2008) Disordering of Fe2+ over octahedrally coordinated sites of tourmaline. American Mineralogist, 93, 1647–1653.Google Scholar

  • Bosi, F. (2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach. Mineralogical Magazine, 74, 1037–1044.Google Scholar

  • Bosi, F. (2011) Stereochemical constraints in tourmaline: from a short-range to a long-range structure. Canadian Mineralogist, 49, 17–27.Google Scholar

  • Bosi, F. (2013) Bond-valence constraints around the O1 site of tourmaline. Mineralogical Magazine, 77, 343–351.Google Scholar

  • Bosi, F. (2014) Mean bond length variation in crystal structures: a bond valence approach. Acta Crystallographica, B70, 697–704.Google Scholar

  • Bosi, F., and Andreozzi, G.B. (2013) A critical comment on Ertl et al. (2012): “Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+- and Mn2+-rich tourmaline. American Mineralogist, 98, 2183–2192.Google Scholar

  • Bosi, F., and Lucchesi, S. (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. American Mineralogist, 92, 1054–1063.Google Scholar

  • Bosi, F., and Skogby, H. (2013) Oxy-dravite, Na(Al2Mg)(Al5Mg)(Si6O18) (BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 1442–1448.Google Scholar

  • Bosi, F., Balić-Žunić, T., and Surour, A.A. (2010) Crystal structure analysis of four tourmalines from the Cleopatra’s Mines (Egypt) and Jabal Zalm (Saudi Arabia), and the role of Al in the tourmaline group. American Mineralogist, 95, 510–518.Google Scholar

  • Bosi, F., Reznitskii, L., and Skogby, H. (2012) Oxy-chromium-dravite, NaCr3(Cr4Mg2) (Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 97, 2024–2030.Google Scholar

  • Bosi, F., Andreozzi, G.B., Skogby, H., Lussier, A.J., Abdu, Y., and Hawthorne, F.C. (2013a) Fluor-elbaite, Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 297–303.Google Scholar

  • Bosi, F., Reznitskii, L., and Sklyarov, E.V. (2013b) Oxy-vanadium-dravite, NaV3(V4Mg2)(Si6O18)(BO3)3(OH)3O: crystal structure and redefinition of the “vanadium-dravite” tourmaline. American Mineralogist, 98, 501–505.Google Scholar

  • Bosi, F., Skogby, H., Hålenius, U., and Reznitskii, L. (2013c) Crystallographic and spectroscopic characterization of Fe-bearing chromo-alumino-povondraite and its relations with oxy-chromium-dravite and oxy-dravite. American Mineralogist, 98, 1557–1564.Google Scholar

  • Bosi, F., Reznitskii, L., Skogby, H., and Hålenius, U. (2014a) Vanadio-oxy-chromium-dravite, NaV3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 1155–1162.Google Scholar

  • Bosi, F., Skogby, H., Reznitskii, L., and Hålenius, U. (2014b) Vanadio-oxy-dravite, NaV3(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 218–224.Google Scholar

  • Bosi, F., Andreozzi, G.B., Hålenius, U., and Skogby, H. (2015a) Experimental evidence for partial Fe2+ disorder at the Y and Z sites of tourmaline: a combined EMP, SREF, MS, IR and OAS study of schorl. Mineralogical Magazine, 79, 515–528.Google Scholar

  • Bosi, F., Andreozzi, G.B., Agrosì, G., and Scandale, E. (2015b) Fluor-tsilaisite, NaMn3Al–6(Si6O18)(BO3)3(OH)3F, a new tourmaline from San Piero in Campo (Elba, Italy) and new data on tsilaisitic tourmaline from the holotype specimen locality. Mineralogical Magazine, 79, 89–101.Google Scholar

  • Bosi, F., Skogby, H., Lazor, P., and Reznitskii, L. (2015c) Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study. Physics and Chemistry of Minerals, 42, 441–453.Google Scholar

  • Bosi, F., Skogby, H., and Hålenius, U. (2016a) Thermally induced cation redistribution in Fe-bearing oxy-dravite and potential geothermometric implications. Contributions to Mineralogy and Petrology, 171, 47.Google Scholar

  • Bosi, F., Skogby, H., and Balić-Žunić, T. (2016b) Thermal stability of extended clusters in dravite: a combined EMP, SREF and FTIR study. Physics and Chemistry of Minerals, 43, 395–407.Google Scholar

  • Bosi, F., Skogby, H., Ciriotti, M.E., Gadas, P., Novák, M., Cempírek, J., Všianský, D., and Filip, J. (2017a) Lucchesiite, CaFe32+ Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Mineralogical Magazine, 81, 1–14.Google Scholar

  • Bosi, F., Reznitskii, L., Hålenius, U., and Skogby, H. (2017b) Crystal chemistry of Al-V-Cr oxy-tourmalines from Sludyanka complex, Lake Baikal, Russia. European Journal of Mineralogy, 29, 457–472.Google Scholar

  • Bosi, F., Cámara, F., Ciriotti, M.E., Hålenius, U., Reznitskii, L., and Stagno, V. (2017c) Crystal-chemical relations and classification problems of tourmalines belonging to the oxy-schorl–oxy-dravite–bosiite–povondraite series. European Journal of Mineralogy, 29, 445–455.Google Scholar

  • Bosi, F., Skogby, H., and Hålenius, U. (2017d) Oxy-foitite, □(Fe2+Al2)Al6(Si6O18) (BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. European Journal of Mineralogy, .CrossrefGoogle Scholar

  • Brown, I.D. (2016) The chemical Bond in Inorganic Chemistry: The Bond Valence Model, 2nd ed. Oxford University Press, U.K.Google Scholar

  • Cámara, F., Ottolini, L., and Hawthorne, F.C. (2002) Crystal chemistry of three tourmalines by SREF, EMPA, and SIMS. American Mineralogist, 87, 1437–1442.Google Scholar

  • Cempírek, J., Houzar, S., Novák, M., Groat, L.A., Selway, J.B., and Šrein, V. (2013) Crystal structure and compositional evolution of vanadium-rich oxy-dravite from graphite quartzite at Bítovánky, Czech Republic. Journal of Geosciencies, 58, 149–162.Google Scholar

  • Clark, C.M., Hawthorne, F.C., and Ottolini, L. (2011) Fluor-dravite, NaMg3 Al6Si6O18(BO3)3(OH)3F, a new mineral species of the tourmaline group from the Crabtree emerald mine, Mitchell County, North Carolina: description and crystal structure. Canadian Mineralogist, 49, 57–62.Google Scholar

  • Dutrow, B.L., and Henry, D.J. (2011) Tourmaline: A geologic DVD. Elements, 7, 301–306.Google Scholar

  • Ertl, A., Hughes, J.M., Pertlik, F., Foit, F.F. Jr., Wright, S.E., Brandstatter, F., and Marler, B. (2002) Polyhedron distortions in tourmaline. Canadian Mineralogist, 40, 153–162.Google Scholar

  • Ertl, A., Kolitsch, U., Prowatke, S., Dyar, M.D., and Henry, D.J. (2006) The F-analog of schorl from Grasstein, Trentino–South Tyrol, Italy: crystal structure and chemistry. European Journal of Mineralogy, 18, 583–588.Google Scholar

  • Ertl, A., Hughes, J.M., Prowatke, S., Ludwig, T., Brandstätter, F., Körner, W., and Dyar, M.D. (2007) Tetrahedrally-coordinated boron in Li-bearing olenite from “mushroom” tourmaline from Momeik, Myanmar: structure and chemistry. Canadian Mineralogist, 45, 891–899.Google Scholar

  • Ertl, A., Tillmanns, E., Ntaflos, T., Francis, C., Giester, G., Korner, W., Hughes, J.M., Lengauer, C., and Prem, M. (2008a) Tetrahedrally coordinated boron in Al-rich tourmaline and its relationship to the pressure-temperature conditions of formation. European Journal of Mineralogy, 20, 881–888.Google Scholar

  • Ertl, A., Rossman, G.R., Hughes, J.M., Ma, C., and Brandstätter, F. (2008b) V3+-bearing, Mg-rich, strongly disordered olenite from a graphite deposit near Amstall, Lower Austria: A structural, chemical and spectroscopic investigation. Neues Jahrbuch für Mineralogie Abhandlungen, 184, 243–253.Google Scholar

  • Ertl, A., Kolitsch, U., Meyer, H.-P., Ludwig, T., Lengauer, C.L., Nasdala, L., and Tillmanns, E. (2009) Substitution mechanism in tourmalines of the “fluorelbaite”-rossmanite series from Wolkenburg, Saxony, Germany. Neues Jahrbuch für Mineralogie Abhandlungen, 186, 51–61.Google Scholar

  • Ertl, A., Rossman, G.R., Hughes, J.M., London, D., Wang, Y., O’Leary, J.A., Dyar, M.D., Prowatke, S., Ludwig, T., and Tillmanns, E. (2010a) Tourmaline of the elbaite-schorl series from the Himalaya Mine, Mesa Grande, California, U.S.A.: A detailed investigation. American Mineralogist, 95, 24–40.Google Scholar

  • Ertl, A., Marschall, H.R., Giester, G., Henry, D.J., Schertl, H.-P., Ntaflos, T., Luvizotto, G.L., Nasdala, L., and Tillmanns, E. (2010b) Metamorphic ultra high-pressure tourmalines: Structure, chemistry, and correlations to PT conditions. American Mineralogist, 95, 1–10.Google Scholar

  • Ertl, A., Mali, H., Schuster, R., Körner, W., Hughes, J.M., Brandstätter, F., and Tillmanns, E. (2010c) Li-bearing, disordered Mg-rich tourmalines from the pegmatite-marble contact from the Austroalpine basement units (Styria, Austria). Mineralogy and Petrology, 99, 89–104.Google Scholar

  • Ertl, A., Schuster, R., Hughes, J.M., Ludwig, T., Meyer, H.-P., Finger, F., Dyar, M.D., Ruschel, K., Rossman, G.R., Klötzi, U., Brandstätter, F., Lengauer, C.L., and Tillmans, E. (2012a) Li-bearing tourmalines in Variscan granitic pegmatites from the Moldanubian nappes, Lower Austria. European Journal of Mineralogy, 24, 695–715.Google Scholar

  • Ertl, A., Giester, G., Ludwig, T., Meyer, H.-P., and Rossman, G.R. (2012b) Synthetic B-rich olenite: Correlations of single-crystal structural data. American Mineraleralogist, 97, 1591–1597.Google Scholar

  • Ertl, A., Kolitsch, U., Dyar, M.D., Hughes, J.M., Rossman, G.R., Pieczka, A., Henry, D.J., Pezzotta, F., Prowatke, S., Lengauer, C.L., and others. (2012c) Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: evidence from Fe2+- and Mn2+-rich tourmaline. American Mineralogist, 97, 1402–1416.Google Scholar

  • Ertl, A., Giester, G., Schüssler, U., Brätz, H., Okrusch, M., Tillmanns, E., and Bank, H. (2013) Cu- and Mn-bearing tourmalines from Brazil and Mozambique: Crystal structures, chemistry and Correlations. Mineralogy and Perology, 107, 265–279.Google Scholar

  • Ertl, A., Vereshchagin, O.S., Giester, G., Tillmanns, E., Meyer, H.-P., Ludwig, T., Rozhdestvenskaya, I.V., and Frank-Kamenetskaya, O.V. (2015) Structural and chemical investigation of a zoned synthetic Cu-rich tourmaline. Canadian Mineralogist, 53, 209–220.Google Scholar

  • Ertl, A., Baksheev, I.A., Giester, G., Lengauer, C.L., Prokofiev, V.Y., and Zorina, L.D. (2016a) Bosiite, NaFe33+ (Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new ferric member of the tourmaline supergroup from the Darasun gold deposit, Transbaikalia, Russia. European Journal of Mineralogy, 28, 581–591.Google Scholar

  • Ertl, A., Kolitsch, U., Dyar, M.D., Meyer, H.-P., Henry, D.J., Rossman, G.R., Prem, M., Ludwig, T., Nasdala, L., Lengauer, C.L., Tillmanns, E., and Niedermayr, G. (2016b) Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities. European Journal of Mineralogy, 28, 163–177.Google Scholar

  • Filip, J., Bosi, F., Novák, M., Skogby, H., Tuček, J., Čuda, J., and Wildner, M. (2012) Redox processes of iron in the tourmaline structure: Example of the high-temperature treatment of Fe3+-rich schorl. Geochimica et Cosmochimica Acta, 86, 239–256.Google Scholar

  • Gatta, G.D., Danisi, R.M., Adamo, I., Meven, M., and Diella, V. (2012) A single-crystal neutron and X-ray diffraction study of elbaite. Physics and Chemistry of Minerals, 39, 577–588.Google Scholar

  • Gatta, G.D., Bosi, F., McIntyre, G.J., and Skogby, H. (2014) First accurate location of two proton sites in tourmaline: A single-crystal neutron diffraction study of oxy-dravite. Mineralogical Magazine, 78, 681–692.Google Scholar

  • Gibbs, G.V., Ross, N.L., Cox, D.F., and Rosso, K.M. (2014) Insights into the crystal chemistry of Earth materials rendered by electron density distributions: Pauling’s rules revisited. American Mineralogist, 99, 1071–1084.Google Scholar

  • Grew, E.S., Krivovichev, S.V., Hazen, R.M., and Hystad, G. (2016) Evolution of structural complexity in boron minerals. Canadian Mineralogist, 54, 125–143.Google Scholar

  • Grew, E.S., Bosi, F., Gunter, M., Hålenius, U., Trumbull, R.B., and Yates, M.G. (2017) Fluor-elbaite, lepidolite and Ta-Nb oxides from a pegmatite of the 3000 MA Sinceni pluton, Swaziland: Evidence for lithium-cesium-tantalum (LCT) pegmatites in the Mesoarchean. European Journal of Mineralogy, .CrossrefGoogle Scholar

  • Hatert, F., and Burke, E.A.J. (2008) The IMA–CNMNC dominant-constituent rule revisited and extended. Canadian Mineralogist, 46, 717–728.Google Scholar

  • Hawthorne, F.C. (1996) Structural mechanisms for light-element variations in tourmaline. Canadian Mineralogist, 34, 123–132.Google Scholar

  • Hawthorne, F.C. (2002) Bond-valence constraints on the chemical composition of tourmaline. Canadian Mineralogist, 40, 789–797.Google Scholar

  • Hawthorne, F.C. (Ed.) (2006) Landmark Papers: Structure Topology. The Mineralogical Society of Great Britain and Ireland, London.Google Scholar

  • Hawthorne, F.C. (2016) Short-range atomic arrangements in minerals. I: the minerals of the amphibole, tourmaline and pyroxene supergroups. European Journal of Mineralogy, 28, 513–536.Google Scholar

  • Hawthorne, F.C., and Dirlam, D.M. (2011) Tourmaline the indicator mineral: from atomic arrangement to Viking navigation. Elements, 7, 307–312.Google Scholar

  • Hawthorne, F.C., and Henry, D. (1999) Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 11, 201–215.Google Scholar

  • Hawthorne, F.C.H., Della Ventura, G., Oberti, R., Robert, J.-L., and Iezzi, G. (2005) Short-range order in minerals: amphiboles. Canadian Mineralogist, 43, 1895–1920.Google Scholar

  • Henry, D.J., and Dutrow, B.L. (2011) The incorporation of fluorine in tourmaline: Internal crystallographic controls or external environmental influences? Canadian Mineralogist, 49, 41–56.Google Scholar

  • Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P., and Pezzotta, F. (2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895–913.Google Scholar

  • Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P., and Pezzotta, F. (2013) Erratum. American Mineralogist, 98, 524.Google Scholar

  • Hughes, J.M., Rakovan, J., Ertl, A., Rossman, G.R., Baksheev, I., and Bernhardt, H.-J. (2011) Dissymmetrization in tourmaline: the atomic arrangement of sectorally zoned triclinic Ni-bearing dravite. Canadian Mineralogist, 49, 29–40.Google Scholar

  • Kihara, K., Hirata, H., Ida, A., Okudera, H., and Morishita, T. (2007) An X-ray single crystal study of asymmetric thermal vibrations and the positional disorder of atoms in elbaite. Journal of Mineralogical and Petrological Sciences, 102, 115–126.Google Scholar

  • Krivovichev, S.V. (2013) Structural complexity of minerals: Information storage and processing in the mineral world. Mineralogical Magazine, 77, 275–326.Google Scholar

  • Kutzschbach, M., Wunder, B., Rhede, D., Koch-Müller, M., Ertl, A., Giester, G., Heinrich, W., and Franz, G. (2016) Tetrahedral boron in natural and synthetic high-pressure tourmaline: Evidence from Raman spectroscopy. American Mineralogist, 101, 93–104.Google Scholar

  • Kutzschbach, M., Wunder, B., Krstulovic, M., Ertl, A., Trumbull, R., Rocholl, A., and Giester, G. (2017) First high-pressure synthesis of rossmanitic tourmaline and evidence for the incorporation of Li at the X site. Physics and Chemistry of Minerals, 44, 353–363.Google Scholar

  • London, D., Ertl, A., Hughes, J.M., Morgan, G.B. VI, Fritz, E.A., and Harms, B.S. (2006) Synthetic Ag-rich tourmaline: Structure and chemistry. American Mineralogist, 91, 680–684.Google Scholar

  • Lussier, A.J., Aguiar, P.M., Michaelis, V.K., Kroeker, S., Herwig, S., Abdu, Y., and Hawthorne, F.C. (2008) Mushroom elbaite from the Kat Chay mine, Momeik, near Mogok, Myanmar: I. Crystal chemistry by SREF, EMPA, MAS NMR and Mössbauer spectroscopy. Mineralogical Magazine, 72, 747–761.Google Scholar

  • Lussier, A.J., Hawthorne, F.C., Abdu, Y., Herwig, S., Michaelis, V.K., Aguiar, P.M., and Kroeker, S. (2011a) The crystal chemistry of “wheatsheaf” tourmaline from Mogok, Myanmar. Mineralogical Magazine, 72, 999–1010.Google Scholar

  • Lussier, A.J., Abdu, Y. Hawthorne, F.C., Michaelis, V.K., Aguiar, P.M., and Kroeker, S. (2011b) Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. I. Crystal chemistry and structure by SREF and 11B and 27Al MAS NMR spectroscopy. Canadian Mineralogist, 49, 63–88.Google Scholar

  • Lussier, A., Ball, N.A., Hawthorne, F.C., Henry, D.J., Shimizu, R., Ogasawara, Y., and Ota, T. (2016) Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: description and crystal structure. American Mineralogist, 101, 355–361.Google Scholar

  • Marler, B., Borowski, M., Wodara, U., and Schreyer, W. (2002) Synthetic tourmaline (olenite) with excess boron replacing silicon in the tetrahedral site: II. Structure analysis. European Journal of Mineralogy, 14, 763–771.Google Scholar

  • Marschall, H.R., Korsakov, A.V., Luvizotto, G.L., Nasdala, L., and Ludwig, T. (2009) On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks. Journal of the Geological Society, 166, 811–823.Google Scholar

  • Nickel, E.H., and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature. Canadian Mineralogist, 36, 913–926.Google Scholar

  • Nishio-Hamane, D., Minakawa, T., Yamaura, J., Oyama, T., Ohnishi, M., and Shimobayashi, N. (2014) Adachiite, a Si–poor member of the tourmaline supergroup from the Kiura mine, Oita Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 109, 74–78.Google Scholar

  • Novák, M., Ertl, A., Povondra, P., Galiová, M.V., Rossman, G.R., Pristacz, H., Prem, M., Giester, G., Gadas, P., and Škoda, R. (2013) Darrellhenryite, Na(LiA2 Al6(BO3)3Si6O18(OH)3O, a new mineral from the tourmaline supergroup. American Mineralogist, 98, 1886–1892.Google Scholar

  • Razmanova, Z.P., Kornetova, V.A., Shipko, M.N., and Belov, N.B. (1983) Refinements in crystal structure and configuration of iron-bearing uvite. Trudy AN SSSR, Mineralogicheskiy Muzey im. A.E. Fersmana, 31, 10–116 (in Russian).Google Scholar

  • Reznitskii, L., Clark, C.M., Hawthorne, F.C., Grice, J.D., Skogby, H., Hålenius, U., and Bosi, F. (2014) Chromo-alumino-povondraite, NaCr3(Al4Mg2)(Si6O18) (BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 1767–1773.Google Scholar

  • Rozhdestvenskaya, I.V., Bronzova, Yu.M., Frank-Kamenetskaya, O.V., Zolotarev, A.A., Kuznetsova, L.G., and Bannova, I.I. (2008) Refinement of the crystal structure of calcium–lithium–aluminum tourmaline from the pegmatite vein in the Sangilen Upland (Tuva Republic). Crystallography Reports, 53, 223–227.Google Scholar

  • Rozhdestvenskaya, I.V., Setkovab, T.V., Vereshchagina, O.S., Shtukenberga, A.G., and Shapovalovb, Yu.B. (2012) Refinement of the crystal structures of synthetic nickel- and cobalt-bearing tourmalines. Crystallography Reports, 57, 57–63.Google Scholar

  • Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar

  • Shtukenberg, A., Rozhdestvenskaya, I., Frank-Kamenetskaya, O., Bronzova, J., Euler, H., Kirfel, A., Bannova, I., and Zolotarev, A. (2007) Symmetry and crystal structure of biaxial elbaite-liddicoatite tourmaline from the Transbaikalia region, Russia. American Mineralogist, 92, 675–686.Google Scholar

  • Skogby, H., Bosi, F., and Lazor, P. (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Physics and Chemistry of Minerals, 39, 811–816.Google Scholar

  • van Hinsberg, V.J., Henry, D.J., and Marschall, H.R. (2011) Tourmaline: an ideal indicator of its host environment. Canadian Mineralogist, 49, 1–16.Google Scholar

  • Vereshchagin, O.S., Rozhdestvenskaya, I.V., Frank-Kamenetskaya, O.V., Zolotarev, A.A., and Mashkovtsev, R.I. (2013) Crystal chemistry of Cu-bearing tourmalines. American Mineralogist, 98, 1610–1616.Google Scholar

  • Vereshchagin, O.S., Rozhdestvenskaya, I.V., Frank-Kamenetskaya, O.V., Zolotarev, A.A., and Mashkovtsev, R.I. (2014) Ion substitutions and structural adjustment in Cr-bearing tourmalines. European Journal of Mineralogy, 26, 309–321.Google Scholar

  • Vereshchagin, O.S., Frank-Kamenetskaya, O.V., and Rozhdestvenskaya, I.V. (2015) Crystal structure and stability of Ni-rich synthetic tourmaline. Distribution of divalent transition-metal cations over octahedral positions. Mineralogical Magazine, 79, 997–1006.Google Scholar

  • Vereshchagin, O.S., Setkova, T.V., Rozhdestvenskaya, I.V., Frank-Kamenetskaya, O.V., Deyneko, D.V., and Pokholok, K.V. (2016) Synthesis and crystal structure of Ga-rich, Fe-bearing tourmaline. European Journal of Mineralogy, 28, 593–599.Google Scholar

  • Watenphul, A., Burgdorf, M., Schlüter, J., Horn, I., Malcherek, T., and Mihailova, B. (2016) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines. American Mineralogist, 101, 970–985.Google Scholar

About the article

Received: 2017-08-30

Accepted: 2017-10-16

Published Online: 2018-01-29

Published in Print: 2018-02-23


Citation Information: American Mineralogist, Volume 103, Issue 2, Pages 298–306, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2018-6289.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in