Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Putirka, Keith / Swainson, Ian

12 Issues per year

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 103, Issue 5


High-pressure phase behavior and equations of state of ThO2 polymorphs

Bethany A. Chidester / Olivia S. Pardo
  • Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rebecca A. Fischer
  • Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elizabeth C. Thompson
  • Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dion L. Heinz
  • Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Clemens Prescher
  • GeoSoilEnviroCARS, University of Chicago, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vitali B. Prakapenka
  • GeoSoilEnviroCARS, University of Chicago, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew J. Campbell
  • Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-30 | DOI: https://doi.org/10.2138/am-2018-6212


ThO2 is an important material for understanding the heat budget of Earth’s mantle, as well as the stability of nuclear fuels at extreme conditions. We measured the in situ high-pressure, high-temperature phase behavior of ThO2 to ~60 GPa and ~2500 K. It undergoes a transition from the cubic fluorite-type structure (thorianite) to the orthorhombic α-PbCl2 cotunnite-type structure between 20 and 30 GPa at room temperature. Prior to the transition at room temperature, an increase in unit-cell volume is observed, which we interpret as anion sub-lattice disorder or pre-transformation “melting” (Boulfelfel et al. 2006). The thermal equation of state parameters for both thorianite [V0 = 26.379(7), K0 = 204(2), αKT = 0.0035(3)] and the high-pressure cotunnite-type phase [V0 = 24.75(6), K0 = 190(3), αKT = 0.0037(4)] are reported, holding K0 fixed at 4. The similarity of these parameters suggests that the two phases behave similarly within the deep Earth. The lattice parameter ratios for the cotunnite-type phase change significantly with pressure, suggesting a different structure is stable at higher pressure.

Keywords: XRD data; ThO2; Raman spectroscopy; ThO2; phase transition; high-pressure studies; diamond-anvil cell; high-temperature studies; laser-heating

References cited

  • Akahama, Y., and Kawamura, H. (2007) Diamond anvil Raman gauge in multimegabar pressure range. High Pressure Research, 27(4), 473–482.Google Scholar

  • Arevalo, R. Jr., McDonough, W.F., and Luong, M. (2009) The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters, 278, 361–369.Google Scholar

  • Boettger, J.C. (2009) Theoretical zero-temperature isotherm and structural phase stability of thorium dioxide. International Journal of Quantum Chemistry, 109(15), 3564–3569.Google Scholar

  • Boudjemline, A., Louail, L., Islam, M.M., and Diawara, B. (2011) Dependence of pressure on elastic, electronic and optical properties of CeO2 and ThO2: A first principles study. Computational Materials Science, 50(7), 2280–2286.Google Scholar

  • Boulfelfel, S.E., Zahn, D., Hochrein, O., Grin, Y., and Leoni, S. (2006) Lowdimensional sublattice melting by pressure: Superionic conduction in the phase interfaces of the fluorite-to-cotunnite transition of CaF2. Physical Review B, 74(9), 094106.Google Scholar

  • Boultif, A., and Louër, D. (2004) Powder pattern indexing with the dichotomy method. Journal of Applied Crystallography, 37, 724–731.Google Scholar

  • Campbell, A.J., Seagle, C.T., Heinz, D.L., Shen, G., and Prakapenka, V.B. (2007) Partial melting in the iron–sulfur system at high pressure: A synchrotron X-ray diffraction study. Physics of the Earth and Planetary Interiors, 162(1–2), 119–128.Google Scholar

  • Campbell, A.J., Danielson, L., Righter, K., Seagle, C.T., Wang, Y., and Prakapenka, V.B. (2009) High pressure effects on the iron–iron oxide and nickel–nickel oxide oxygen fugacity buffers. Earth and Planetary Science Letters, 286(3–4), 556–564.Google Scholar

  • Clausen, K.N., Hackett, M.A., Hayes, W., Hull, S., Hutchings, M.T., MacDonald, J.E., McEwen, K.A., Osborn, R., and Steigenberger, U. (1989) Coherent diffuse neutron scattering from UO2 and ThO2 at temperatures above 2000 K. Physica B, 156–157, 103–106.Google Scholar

  • Crowhurst, J.C., Jeffries, J.R., Aberg, D., Zaug, J.M., Dai, Z.R., Siekhaus, W.J., Teslich, N.E., Holliday, K.S., Knight, K.B., Nelson, A.J., and Hutcheon, I.D. (2015) A combined theoretical and experimental investigation of uranium dioxide under high static pressure. Journal of Physics: Condensed Matter, 27(26), 265401.Google Scholar

  • Cuney, M. (2013) Uranium and thorium resources and the sustainability of nuclear energy. In P.C. Burns and G.E. Sigmon, Eds., Uranium: Cradle to Grave, Mineralogical Association of Canada Short Course Series, 43, p. 417–437.Google Scholar

  • Dancausse, J.-P, Gering, E., Heathman, S., and Benedict, U. (1990) Pressure-induced phase transition in ThO2 and PuO2. High Pressure Research, 2(5–6), 381–389.Google Scholar

  • Dewaele, A., Belonoshko, A.B., Garbarino, G., Occelli, F., Bouvier, P., Hanfland, M., and Mezouar, M. (2012) High-pressure–high-temperature equation of state of KCl and KBr. Physical Review B, 85(21), 214105.Google Scholar

  • Fonseca, R.O.C., Mallmann, G., Sprung, P., Sommer, J.E., Heuser, A., Speelmanns, I.M., and Blanchard, H. (2014) Redox controls on tungsten and uranium crystal/ silicate melt partitioning and implications for the U/W and Th/W ratio of the lunar mantle. Earth and Planetary Science Letters, 404, 1–13.Google Scholar

  • Haines, J., Léger, J.M., Hull, S., Petitet, J.P., Pereira, A.S., Perottoni, C.A., and da Jornada, J.A.H. (1997) Characterization of the cotunnite-type phases of zirconia and hafnia by neutron diffraction and Raman spectroscopy. Journal of the American Ceramic Society, 80(7), 1910–1914.Google Scholar

  • Harding, J.H., Lindan, P.J.D., and Pyper, N.C. (1994) The cohesion of thorium dioxide. Journal of Physics: Condensed Matter, 6, 6485–6496.Google Scholar

  • Idiri, M., Le Bihan, T., Heathman, S., and Rebizant, J. (2004) Behavior of actinide dioxides under pressure: UO2 and ThO2. Physical Review B, 70(1), 014113.Google Scholar

  • Jayaraman, A., Kourouklis, G.A., and Van Uitert, L.G. (1988) A high pressure Raman study of ThO2 to 40 GPa and pressure-induced phase transition from fluorite structure. Pramana: Journal of Physics, 30(3), 22–231.Google Scholar

  • Kamali, K., Ananthasivan, K., Ravindran, T.R., and Kumar, D.S. (2017) High pressure Raman spectroscopic studies on nanocrystalline ThO2. Journal of Nuclear Materials, 493, 77–83.Google Scholar

  • Kanchana, V., Vaitheeswaran, G., Svane, A., and Delin, A. (2006) First-principles study of elastic properties of CeO2, ThO2 and PoO2. Journal of Physics: Condensed Matter, 18(42), 9615–9624.Google Scholar

  • Kelly, P.J., and Brooks, M.S.S. (1987) Electronic structure and ground-state properties of the actinide dioxides. Journal of the American Chemical Society, Faraday Trans. 2, 83(7), 1189–1203.Google Scholar

  • Klotz, S., Chervin, J.C., Munsch, P., and Le Marchand, G. (2009) Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413.Google Scholar

  • Kuksin, A.Y., and Smirnova, D.E. (2014) Calculation of diffusion coefficients of defects and ions in UO2. Physics of the Solid State, 56(6), 1214–1223.Google Scholar

  • Kupryazhkin, A.Y., Svetlichnyi, D.G., and Zhiganov, A.N. (2011) Self-diffusion of oxygen in superstoichiomertric uranium dioxide in the range of the superion phase transition. Technical Physics, 56(2), 221–225.Google Scholar

  • Li, S., Ahuja, R., and Johansson, B. (2002) High pressure theoretical studies of actinide oxides. High Pressure Research, 22, 471–474.Google Scholar

  • Li, Q., Yang, J.-S., Huang, D.-H., Cao, Q.-L., and Wang, F.-H. (2014) Phase transition and thermodynamic properties of ThO2: Quasi-harmonic approximation calculations and anharmonic effects. Chinese Physics B, 23(1), 017101.Google Scholar

  • Li, H., Tao, Q., Li, N., Tang, R., Zhao, Y., Zhu, H., Zhu, P., and Wang, X. (2016) Pressure-induced structural transition of Y2Zr2O7. Journal of Alloys and Compounds, 660, 446–449.Google Scholar

  • Macedo, P.M., Capps, W., and Wachtman, J.B. Jr. (1964) Elastic constants of single crystal ThO2 at 25°C. Journal of the American Ceramic Society, 47(12), 651.Google Scholar

  • March, N.H., Richardson, D.D., and Tosi, M.P. (1980) Correlation of the superionic transition temperature and Frenkel energy in fluorite crystals. Solid State Communications, 35, 903–905.Google Scholar

  • Matveev, L.V., and Veshchunov, M.S. (1997) High-temperature transition of uranium dioxide to the super-ion state. Journal of Experimental and Theoretical Physics, 84(2), 322–329.Google Scholar

  • McDonough, W.F., and Sun, S.-s. (1995) The composition of the Earth. Chemical Geology, 120, 223–253.Google Scholar

  • Nishio-Hamane, D., Dekura, H., Seto, Y., and Yagi, T. (2015) Theoretical and experimental evidence for the post-cotunnite phase transition in zirconia at high pressure. Physics and Chemistry of Minerals, 42(5), 385–392.Google Scholar

  • Olsen, J.S., Gerward, L., Kanchana, V., and Vaitheeswaran, G. (2004) The bulk modulus of ThO2—an experimental and theoretical study. Journal of Alloys and Compounds, 381(1–2), 37–40.Google Scholar

  • Perry, S.N., Pigott, J.S., and Panero, W.R. (2017) Ab initio calculations of uranium and thorium storage in CaSiO3-perovskite in the Earth’s lower mantle. American Mineralogist, 102(2), 321–326.Google Scholar

  • Prakapenka, V.B., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., Rivers, M.L., and Sutton, S.R. (2008) Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Research, 28(3), 225–235.Google Scholar

  • Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 35(3), 223–230.Google Scholar

  • Rittman, D.R., Turner, K.M., Park, S., Fuentes, A.F., Yan, J., Ewing, R.C., and Mao, W.L. (2017) High-pressure behavior of A2B2O7 pyrochlore (A=Eu, Dy; B=Ti, Zr). Journal of Applied Physics, 121(4), 045902.Google Scholar

  • Rodriguez-Carvajal, J. (1993) Recent advanes in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192, 55–56.Google Scholar

  • Ross, M., Mao, H.K., Bell, P.M., and Xu, J.A. (1986) The equation of state of dense argon: A comparison of shock and static studies. The Journal of Chemical Physics, 85(2), 1028–1033.Google Scholar

  • Sevik, C., and Çağın, T. (2009) Mechanical and electronic properties of CeO2, ThO2, and (Ce,Th)O2 alloys. Physical Review B, 80(1), 014108.Google Scholar

  • Shein, I.R., Shein, K.I., and Ivanovskii, A.L. (2007) Elastic and electronic properties and stability of SrThO3, SrZrO3 and ThO2 from first principles. Journal of Nuclear Materials, 361(1), 69–77.Google Scholar

  • Song, H.X., Geng, H.Y., and Wu, Q. (2012) Pressure-induced group-subgroup phase transitions and post-cotunnite phases in actinide dioxides. Physical Review B, 85(6), 064110.Google Scholar

  • Toby, B.H., and Von Dreele, R.B. (2013) GSAS-II: The genesis of a modern open-source all purpose crystallography software. Journal of Applied Crystallography, 46, 544–549.Google Scholar

  • U.S. Nuclear Regulatory Commission (2012) Standard Technical Specifications, Babcock and Wilcox Plants, vol. 1. Washington, D.C.Google Scholar

  • Wang, B.-T., Shi, H., Li, W.-D., and Zhang, P. (2010) First-principles study of ground-state properties and high pressure behavior of ThO2. Journal of Nuclear Materials, 399(2–3), 181–188.Google Scholar

  • Zhang, F.X., Lang, M., Liu, Z., and Ewing, R.C. (2010) Pressure-induced disordering and anomalous lattice expansion in La2Zr2O7 pyrochlore. Physical Review Letters, 105(1), 015503.Google Scholar

About the article

Received: 2017-06-13

Accepted: 2018-01-30

Published Online: 2018-04-30

Published in Print: 2018-05-25

Citation Information: American Mineralogist, Volume 103, Issue 5, Pages 749–756, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2018-6212.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in