Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Putirka, Keith / Swainson, Ian

12 Issues per year


IMPACT FACTOR 2016: 2.021

CiteScore 2016: 1.88

SCImago Journal Rank (SJR) 2016: 0.952
Source Normalized Impact per Paper (SNIP) 2016: 0.955

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 103, Issue 5

Issues

Equations of state and phase boundary for stishovite and CaCl2-type SiO2

Rebecca A. Fischer
  • Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637, U.S.A.
  • Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 119, Washington, D.C. 20013-7012, U.S.A.
  • University of California Santa Cruz, Department of Earth and Planetary Sciences, 1156 High Street, Santa Cruz, California 95064, U.S.A.
  • Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, U.S.A.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew J. Campbell
  • Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bethany A. Chidester
  • Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel M. Reaman
  • Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elizabeth C. Thompson
  • Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jeffrey S. Pigott
  • School of Earth Sciences, Ohio State University, 125 S. Oval Mall, Columbus, Ohio 43210, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vitali B. Prakapenka
  • Center for Advanced Radiation Sources, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jesse S. Smith
  • High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington, 9700 S. Cass Avenue, Argonne, Illinois 60439, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-30 | DOI: https://doi.org/10.2138/am-2018-6267

Abstract

Silica is thought to be present in the Earth’s lower mantle in subducting plates, in addition to being a prototypical solid whose physical properties are of broad interest. It is known to undergo a phase transition from stishovite to the CaCl2-type structure at ~50–80 GPa, but the exact location and slope of the phase boundary in pressure-temperature space is unresolved. There have been many previous studies on the equation of state of stishovite, but they span a limited range of pressures and temperatures, and there has been no thermal equation of state of CaCl2-type SiO2 measured under static conditions. We have investigated the phase diagram and equations of state of silica at 21–89 GPa and up to ~3300 K using synchrotron X-ray diffraction in a laser-heated diamond-anvil cell. The phase boundary between stishovite and CaCl2-type SiO2 can be approximately described as T = 64.6(49)·P – 2830(350), with temperature T in Kelvin and pressure P in GPa. The stishovite data imply K0 = 5.24(9) and a quasi-anharmonic T2 dependence of −6.0(4) × 10−6 GPa·cm3/mol/K2 for a fixed q = 1, γ0 = 1.71, and K0 = 302 GPa, while for the CaCl2-type phase K0 = 341(4) GPa, K0 = 3.20(16), and γ0 = 2.14(4) with other parameters equal to their values for stishovite. The behaviors of the a and c axes of stishovite with pressure and temperature were also fit, indicating a much more compressible c axis with a lower thermal expansion as compared to the a axis. The phase transition between stishovite and CaCl2-type silica should occur at pressures of 68–78 GPa in the Earth, depending on the temperature in subducting slabs. Silica is denser than surrounding mantle material up to pressures of 58–68 GPa, with uncertainty due to temperature effects; at higher pressures than this, SiO2 becomes gravitationally buoyant in the lower mantle.

Keywords: Silica; SiO2; stishovite; phase diagram; equation of state; phase transition; X-ray diffraction

References cited

  • Ahrens, T. J., Anderson, D.L., and Ringwood, A.E. (1969) Equations of state and crystal structures of high-pressure phases of shocked silicates and oxides. Reviews of Geophysics, 7, 667–707.Google Scholar

  • Ahrens, T.J., Takahashi, T., and Davies, G.F. (1970) A proposed equation of state of stishovite. Journal of Geophysical Research, 75, 310–316.Google Scholar

  • Akaogi, M., Oohata, M., Kojitani, H., and Kawaji, H. (2011) Thermodynamic properties of stishovite by low-temperature heat capacity measurements and the coesite-stishovite transition boundary. American Mineralogist, 96, 1325–1330.Google Scholar

  • Akins, J.A., and Ahrens, T.J. (2002) Dynamic compression of SiO2: A new interpretation. Geophysical Research Letters, 29, 1394.Google Scholar

  • Anderson, D.L., and Kanamori, H. (1968) Shock-wave equations of state for rocks and minerals. Journal of Geophysical Research, 73, 6477–6502.Google Scholar

  • Andrault, D., Fiquet, G., Guyot, F., and Hanfland, M. (1998) Pressure-induced Landautype transition in stishovite. Science, 282, 720–724.Google Scholar

  • Andrault, D., Angel, R.J., Mosenfelder, J.L., and Le Bihan, T. (2003) Equation of state of stishovite to lower mantle pressures. American Mineralogist, 88, 301–307.Google Scholar

  • Angel, R.J. (2000) Equations of state. Reviews in Mineralogy and Geochemistry, 41, 35–59.Google Scholar

  • Asahara, Y., Hirose, K., Ohishi, Y., Hirao, N., Ozawa, H., and Murikami, M. (2013) Acoustic velocity measurements for stishovite across the post-stishovite phase transition under deviatoric stress: Implications for the seismic features of subducting slabs in the mid-mantle. American Mineralogist, 98, 2053–2062.Google Scholar

  • Bass, J.D., Liebermann, R.C., Weidner, D.J., and Finch, S.J. (1981) Elastic properties from acoustic and volume compression experiments. Physics of the Earth and Planetary Interiors, 25, 140–158.Google Scholar

  • Bassett, W.A., and Barnett, J.D. (1970) Isothermal compression of stishovite and coesite up to 85 kilobars at room temperature by X-ray diffraction. Physics of the Earth and Planetary Interiors, 3, 54–60.Google Scholar

  • Belonoshko, A.B., and Dubrovinsky, L.S. (1995) Molecular dynamics of stishovite melting. Geochimica et Cosmochimica Acta, 59, 1883–1889.Google Scholar

  • Birch, F. (1952) Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research, 57, 227–286.Google Scholar

  • Brazhkin, V.V., McNeil, L.E., Grimsditch, M., Bendeliani, N.A., Dyuzheva, T.I., and Lityagina, L.M. (2005) Elastic constants of stishovite up to its amorphization temperature. Journal of Physics: Condensed Matter, 17, 1869–1875.Google Scholar

  • Brown, J.M., and Shankland, T.J. (1981) Thermodynamic parameters in the Earth as determined from seismic profiles. Geophysical Journal of the Royal Astronomical Society, 66, 579–596.Google Scholar

  • Campbell, A.J., Seagle, C.T., Heinz, D.L., Shen, G., and Prakapenka, V.B. (2007) Partial melting in the iron–sulfur system at high pressure: A synchrotron X-ray diffraction study. Physics of the Earth and Planetary Interiors, 162, 119–128.Google Scholar

  • Campbell, A.J., Danielson, L., Righter, K., Seagle, C.T., Wang, Y., and Prakapanka, V.B. (2009) High pressure effects on the iron–iron oxide and nickel–nickel oxide oxygen fugacity buffers. Earth and Planetary Science Letters, 286, 556–564.Google Scholar

  • Chao, E.C.T., Fahey, J.J., Littler, J., and Milton, D.J. (1962) Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. Journal of Geophysical Research, 67, 419–421.Google Scholar

  • Chung, D.H. (1974) General relationships among sound speeds. Physics of the Earth and Planetary Interiors, 8, 113–120.Google Scholar

  • Cohen, R.E. (1991) Bonding and elasticity of stishovite SiO2 at high pressure: Linearized augmented plane wave calculations. American Mineralogist, 76, 733–742.Google Scholar

  • Davies, G.F. (1972) Equations of state and phase equilibria of stishovite and a coesite-like phase from shock-wave and other data. Journal of Geophysical Research, 77, 4920–4933.Google Scholar

  • Dewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., Dorogokupets, P.I., and Torrent, M. (2006) Quasihydrostatic equation of state of iron above 2 Mbar. Physical Review Letters, 97, 215504.Google Scholar

  • Dorfman, S.M., Prakapenka, V.B., Meng, Y., amd Duffy, T.S. (2012) Intercomparison of pressure standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar. Journal of Geophysical Research, 117, B08210.Google Scholar

  • Dorogokupets, P.I., and Oganov, A.R. (2007) Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures. Physical Review B, 75, 024115.Google Scholar

  • Driver, K.P., Cohen, R.E., Wu, Z., Militzer, B., López Rios, P., Towler, M.D., Needs, R.J., and Wilkins, J.W. (2010) Quantum Monte Carlo computations of phase stability, equations of state, and elasticity of high-pressure silica. Proceedings of the National Academy of Sciences, 107, 9519–9524.Google Scholar

  • Dubrovinsky, L.S., Saxena, S.K., Lazor, P., Ahuja, R., Eriksson, O., Wills, J.M., and Johansson, B. (1997) Experimental and theoretical identification of a new high-pressure phase of silica. Nature, 388, 362–365.Google Scholar

  • Dubrovinsky, L.S., Dubrovinskaia, N.A., Prakapenka, V., Seifert, F., Langenhorst, F., Dmitriev, V., Weber, H.-P., and Le Bihan, T. (2003) High-pressure and high-temperature polymorphism in silica. High Pressure Research, 23, 35–39.Google Scholar

  • Dziewonski, A.M., and Anderson, D.L. (1981) Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.Google Scholar

  • Fischer, R.A., Campbell, A.J., Shofner, G.A., Lord, O.T., Dera, P., and Prakapenka, V.B. (2011) Equation of state and phase diagram of FeO. Earth and Planetary Science Letters, 304, 496–502.Google Scholar

  • Fischer, R.A., Campbell, A.J., Caracas, R., Reaman, D.M., Dera, P., and Prakapenka, V.B. (2012) Equation of state and phase diagram of Fe–16Si alloy as a candidate component of Earth’s core. Earth and Planetary Science Letters, 357-358, 268–276.Google Scholar

  • Fischer, R.A., Campbell, A.J., Caracas, R., Reaman, D.M., Heinz, D.L., Dera, P., and Prakapenka, V.B. (2014) Equations of state in the Fe–FeSi system at high pressures and temperatures. Journal of Geophysical Research: Solid Earth, 119, 2810–2827.Google Scholar

  • Fischer, R.A., Nakajima, Y., Campbell, A.J., Frost, D.J., Harries, D., Langenhorst, F., Miyajima, N., Pollok, K., and Rubie, D.C. (2015) High pressure metal–silicate partitioning of Ni, Co, V., Cr, Si, and O. Geochimica et Cosmochimica Acta, 167, 177–194.Google Scholar

  • Graham, E.K. (1973) On the compression of stishovite. Geophysical Journal of the Royal Astronomical Society, 32, 15–34.Google Scholar

  • Grocholski, B., Shim, S.-H., and Prakapenka, V.B. (2013) Stability, metastability, and elastic properties of a dense silica polymorph, seifertite. Journal of Geophysical Research: Solid Earth, 118, 1–13.Google Scholar

  • Haines, J., Léger, J.M., Gorelli, F., and Hanfland, M. (2001) Crystalline post-quartz phase in silica at high pressure. Physical Review Letters, 87, 155503.Google Scholar

  • Hamann, D.R. (1996) Generalized gradient theory for silica phase transitions. Physical Review Letters, 76, 660–663.Google Scholar

  • Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Häusermann, D. (1996) Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14, 235–248.Google Scholar

  • Hazen, R.M., Finger, L.W., Hemley, R.J., and Mao, H.K. (1989) High-pressure crystal chemistry and amorphization of α-quartz. Solid State Communications, 72, 507–511.Google Scholar

  • Hay, H., Ferlat, G., Casula, M., Seitsonen, A.P., and Mauri, F. (2015) Dispersion effects in SiO2 polymorphs: An ab initio study. Physical Review B, 92, 144111.Google Scholar

  • Hemley, R.J. (1987) Pressure dependence of Raman spectra of SiO2 polymorphs: α-quartz, coesite, and stishovite. In M.H. Manghnani and Y. Syono, Eds., High-Pressure Research in Mineral Physics, p. 347–359. Terra Scientific, Tokyo/American Geophysical Union, Washington, D.C.Google Scholar

  • Hemley, R.J., Jephcoat, A.P., Mao, H.K., Ming, L.C., and Manghnani, M.H. (1988) Pressure-induced amorphization of crystalline silica. Nature, 334, 52–54.Google Scholar

  • Hemley, R.J., Shu, J., Carpenter, M.A., Hu, J., Mao, H.K., and Kingma, K.J. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114, 527–532.Google Scholar

  • Hirose, K., Takafuji, N., Sata, N., and Ohishi, Y. (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth and Planetary Science Letters, 237, 239–251.Google Scholar

  • Hirose, K., Morard, G., Sinmyo, R., Umemoto, K., Hernlund, J., Helffrich, G., and Lebrosse, S. (2017) Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature, 543, 99–102.Google Scholar

  • Holm, B., and Ahuja, R. (1999) Ab initio calculation of elastic constants of SiO2 stishovite and α-quartz. Journal of Chemical Physics, 111, 2071–2074.Google Scholar

  • Ida, Y., Syono, Y., and Akimoto, S. (1967) Effect of pressure on the lattice parameters of stishovite. Earth and Planetary Science Letters, 3, 216–218.Google Scholar

  • Irifune, T., Ringwood, A.E., and Hibberson, W.O. (1994) Subduction of continental crust and terrigenous and pelagic sediments: An experimental study. Earth and Planetary Science Letters, 126, 351–368.Google Scholar

  • Ishii, T., Kojitani, H., and Akaogi, M. (2012) High-pressure phase transitions and subduction behavior of continental crust at pressure-temperature conditions up to the upper part of the lower mantle. Earth and Planetary Science Letters, 357–358, 31–41.Google Scholar

  • Ito, H., Kawada, K., and Akimoto, S.-I. (1974) Thermal expansion of stishovite. Physics of the Earth and Planetary Interiors, 8, 277–281.Google Scholar

  • Jiang, F., Gwanmesia, G.D., Dyuzheva, T.I., and Duffy, T.S. (2009) Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering. Physics of the Earth and Planetary Interiors, 172, 235–240.Google Scholar

  • Karki, B.B., Warren, M.C., Stixrude, L., Ackland, G.J., and Crain, J. (1997a) Ab initio studies of high-pressure structural transformations in silica. Physical Review B, 55, 3465–3471.Google Scholar

  • Karki, B.B., Stixrude, L., and Crain, J. (1997b) Ab initio elasticity of three high-pressure polymorphs of silica. Geophysical Research Letters, 24, 3269–3272.Google Scholar

  • Keskar, N.R., Troullier, N., Martins, J.L., and Chelikowsky, J.R. (1991) Structural properties of SiO2 in the stishovite structure. Physical Review B, 44, 4081–4088.Google Scholar

  • Kingma, K.J., Hemley, R.J., Mao, H.-k., and Veblen, D.R. (1993) New high-pressure transformations in α-quartz. Physical Review Letters, 70, 3927–3930.Google Scholar

  • Kingma, K.J., Cohen, R.E., Hemley, R.J., and Mao, H.-k. (1995) Transformation of stishovite to a denser phase at lower-mantle pressures. Nature, 374, 243–245.Google Scholar

  • Komabayashi, T., and Fei, Y. (2010) Internally consistent thermodynamic database for iron to the Earth’s core conditions. Journal of Geophysical Research, 115, B03202.Google Scholar

  • Lacks, D.J., and Gordon, R.G. (1993) Calculations of pressure-induced phase transitions in silica. Journal of Geophysical Research, 98, 22147–22155.Google Scholar

  • Lakshtanov, D.L., Sinogeikin, S.V., Litasov, K.D., Prakapenka, V.B., Hellwig, H., Wang, J., Sanches-Valle, C., Perrillat, J.-P., Chen, B., Somayazulu, M., Li, J., Ohtani, E., and Bass, J.D. (2007) The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the earth. Proceedings of the National Academy of Sciences, 104, 13,588–13,590.Google Scholar

  • Lee, C., and Gonze, X. (1995) The pressure-induced ferroelastic phase transition of SiO2 stishovite. Journal of Physics: Condensed Matter, 7, 3693–3698.Google Scholar

  • Lee, C., and Gonze, X. (1997) SiO2 stishovite under high pressure: Dielectric and dynamical properties and the ferroelastic phase transition. Physical Review B, 56, 7321–7330.Google Scholar

  • Li, B., Rigden, S.M., and Liebermann, R.C. (1996) Elasticity of stishovite at high pressure. Physics of the Earth and Planetary Interiors, 96, 113–127.Google Scholar

  • Liebermann, R.C., Ringwood, A.E., and Major, A. (1976) Elasticity of polycrystalline stishovite. Earth and Planetary Science Letters, 32, 127–140.Google Scholar

  • Liu, L.-g., Bassett, W.A., and Takahashi, T. (1974) Effect of pressure on the lattice parameters of stishovite. Journal of Geophysical Research, 79, 1160–1164.Google Scholar

  • Liu, J., Zhang, J., Flesch, L., Li, B., Weidner, D.J., and Liebermann, R.C. (1999) Thermal equation of state of stishovite. Physics of the Earth and Planetary Interiors, 112, 257–266.Google Scholar

  • Luo, S.-N., Mosenfelder, J.L., Asimow, P.D., and Ahrens, T.J. (2002a) Direct shock wave loading of stishovite to 235 GPa: Implications for perovskite stability relative to an oxide assemblage at lower mantle conditions. Geophysical Research Letters, 29, 1691.Google Scholar

  • Luo, S.-N., Çaǧin, T., Strachan, A., Goddard, W.A. III, and Ahrens, T.J. (2002b) Molecular dynamics modeling of stishovite. Earth and Planetary Science Letters, 202, 147–157.Google Scholar

  • Lyzenga, G.A., Ahrens, T.J., and Mitchell, A.C. (1983) Shock temperatures of SiO2 and their geophysical implications. Journal of Geophysical Research, 88, 2431–2444.Google Scholar

  • Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91, 4673–4676.Google Scholar

  • McQueen, R.G., Fritz, J.N., and Marsh, S.P. (1963) On the equation of state of stishovite. Journal of Geophysical Research, 68, 2319–2322.Google Scholar

  • Meng, Y., Hrubiak, R., Rod, E., Boehler, R., and Shen, G. (2015) New developments in laser-heated diamond anvil cell with in situ synchrotron X-ray diffraction at High Pressure Collaborative Access Team. Review of Scientific Instruments, 86, 072201.Google Scholar

  • Mizutani, H., Hamano, Y., and Akimoto, S.-i. (1972) Elastic-wave velocities of polycrystalline stishovite. Journal of Geophysical Research, 77, 3744–3749.Google Scholar

  • Murakami, M., Hirose, K., Ono, S., and Ohishi, Y. (2003) Stability of CaCl2-type and α-PbO2-type SiO2 at high pressure and temperature determined by in-situ X-ray measurements. Geophysical Research Letters, 30, 1207.Google Scholar

  • Nishihara, Y., Nakayama, K., Takahashi, E., Iguchi, T., and Funakoshi, K.-i. (2005) P-V-T equation of state of stishovite to the mantle transition zone conditions. Physics and Chemistry of Minerals, 31, 660–670.Google Scholar

  • Nomura, R., Hirose, K., Sata, N., and Ohishi, Y. (2010) Precise determination of post-stishovite phase transition boundary and implications for seismic heterogeneities in the mid–lower mantle. Physics of the Earth and Planetary Interiors, 183, 104–109.Google Scholar

  • Oganov, A.R., and Dorogokupets, P.I. (2004) Intrinsic anharmonicity in equations of state and thermodynamics of solids. Journal of Physics: Condensed Matter, 16, 1351–1360.Google Scholar

  • Oganov, A.R., Gillan, M.J., and Price, G.D. (2005) Structural stability of silica at high pressures and temperatures. Physical Review B, 71, 064104.Google Scholar

  • Olinger, B. (1976) The compression of stishovite. Journal of Geophysical Research, 81, 5341–5343.Google Scholar

  • Ono, S., Hirose, K., Murakami, M., and Isshiki, M. (2002) Post-stishovite phase boundary in SiO2 determined by in situ X-ray observations. Earth and Planetary Science Letters, 197, 187–192.Google Scholar

  • Panero, W.R., Benedetti, L.R., and Jeanloz, R. (2003) Equation of state of stishovite and interpretation of SiO2 shock-compression data. Journal of Geophysical Research, 108.Google Scholar

  • Park, K.T., Terakura, K., and Matsui, Y. (1988) Theoretical evidence for a new ultrahigh-pressure phase of SiO2. Nature, 336, 670–672.Google Scholar

  • Perrillat, J.-P., Ricolleau, A., Daniel, I., Fiquet, G., Mezouar, M., Guignot, N., and Cardon, H. (2006) Phase transformations of subducted basaltic crust in the upmost lower mantle. Physics of the Earth and Planetary Interiors, 157, 139–149.Google Scholar

  • Pigott, J.S., Ditmer, D.A., Fischer, R.A., Reaman, D.M., Hrubiak, R., Meng, Y., Davis, R.J., and Panero, W.R. (2015) High-pressure, high-temperature equations of state using nanofabricated controlled-geometry Ni/SiO2/Ni double hot-plate samples. Geophysical Research Letters, 42, 10239–10247.Google Scholar

  • Prakapenka, V.B., Shen, G., Dubrovinsky, L.S., Rivers, M.L., and Sutton, S.R. (2004) High pressure induced phase transformation of SiO2 and GeO2: Difference and similarity. Journal of Physics and Chemistry of Solids, 65, 1537–1545.Google Scholar

  • Prakapenka, V.B., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., Rivers, M.L., and Sutton, S.R. (2008) Advanced flat top laser heating system for high pressure research at GSECARS: Application to the melting behavior of germanium. High Pressure Research, 28, 225–235.Google Scholar

  • Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: A program for reduction of twodimensional X-ray diffraction data and data exploration. High Pressure Research, 35, 223–230.Google Scholar

  • Ricolleau, A., Perrillat, J.-P., Fiquet, G., Daniel, I., Matas, J., Addad, A., Menguy, N., Cardon, H., Mezouar, M., and Guignot, N. (2010) Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. Journal of Geophysical Research, 115, B08202.Google Scholar

  • Ross, N.L., Shu, J.-F., Hazen, R.M., and Gasparik, T. (1990) High-pressure crystal chemistry of stishovite. American Mineralogist, 75, 739–747.Google Scholar

  • Sato, Y. (1977) Pressure-volume relationship of stishovite under hydrostatic compression. Earth and Planetary Science Letters, 34, 307–312.Google Scholar

  • Shen, G., and Lazor, P. (1995) Measurement of melting temperature of some minerals under lower mantle pressures. Journal of Geophysical Research, 100, 17699–17713.Google Scholar

  • Shen, G., Rivers, M.L., Wang, Y., and Sutton, S.R. (2001) Laser heated diamond anvil cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature. Review of Scientific Instruments, 72, 1273–1282.Google Scholar

  • Shen, G., Prakapenka, V.B., Eng, P.J., Rivers, M.L., and Sutton, S.R. (2005) Facilities for high-pressure research with the diamond anvil cell at GSECARS. Journal of Synchrotron Radiation, 12, 642–649.Google Scholar

  • Sherman, D.M. (1993) Equation of state and high-pressure phase transitions of stishovite (SiO2): Ab initio (periodic Hartree-Fock) results. Journal of Geophysical Research, 98, 11865–11873.Google Scholar

  • Shieh, S.R., Duffy, T.S., and Li, B. (2002) Strength and elasticity of SiO2 across the stishovite-CaCl2-type structural phase boundary. Physical Review Letters, 89, 255507.Google Scholar

  • Shieh, S.R., Duffy, T.S., and Shen, G. (2005) X-ray diffraction study of phase stability in SiO2 at deep mantle conditions. Earth and Planetary Science Letters, 235, 273–282.Google Scholar

  • Singh, A.K., Andrault, D., and Bouvier, P. (2012) X-ray diffraction from stishovite under nonhydrostatic compression to 70 GPa: Strength and elasticity across the tetragonal → orthorhombic transition. Physics of the Earth and Planetary Interiors, 208–209, 1–10.Google Scholar

  • Striefler, M.E., and Barsch, G.R. (1976) Elastic and optical properties of stishovite. Journal of Geophysical Research, 81, 2453–2466.Google Scholar

  • Sugiyama, M., Endo, S., and Koto, K. (1987) The crystal structure of stishovite under pressure up to 6 GPa. Mineralogical Journal, 13, 455–66.Google Scholar

  • Syracuse, E.M., van Keken, P.E., and Abers, G.A. (2010) The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183, 73–90.Google Scholar

  • Togo, A., Oba, F., and Tanaka, I. (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Physical Review B, 78, 134106.Google Scholar

  • Tse, J.S., Klug, D.D., and Allan, D.C. (1995) Structure and stability of several high-pressure crystalline polymorphs of silica. Physical Review B, 51, 16392–16395.Google Scholar

  • Tsuchida, Y., and Yagi, T. (1989) A new, post-stishovite high-pressure polymorph of silica. Nature, 340, 217–220.Google Scholar

  • Tsuchida, Y., and Yagi, T. (1990) New pressure-induced transformations of silica at room temperature. Nature, 347, 267–269.Google Scholar

  • Tsuchiya, T., Caracas, R., and Tsuchiya, J. (2004) First principles determination of the phase boundaries of high-pressure polymorphs of silica. Geophysical Research Letters, 31, L11610.Google Scholar

  • Tsuneyuki, S., Tsukada, M., Aoki, H., and Matsui, Y. (1988) First-principles interatomic potential of silica applied to molecular dynamics. Physical Review Letters, 61, 869–872.Google Scholar

  • Tsuno, K., Frost, D.J., and Rubie, D.C. (2013) Simultaneous partitioning of silicon and oxygen into the Earth’s core during early Earth differentiation. Geophysical Research Letters, 40, 66–71.Google Scholar

  • Wang, F., Tange, Y., Irifune, T., and Funakoshi, K.-i. (2012) P-V-T-equation of state of stishovite up to mid-lower mantle conditions. Journal of Geophysical Research, 117, B06209.Google Scholar

  • Weidner, D.J., Bass, J.D., Ringwood, A.E., and Sinclair, W. (1982) The single-crystal elastic moduli of stishovite. Journal of Geophysical Research, 87, 4740–4746.Google Scholar

  • Yamanaka, T., Fukuda, T., and Tsuchiya, J. (2002) Bonding character of SiO2 stishovite under high pressures up to 30 GPa. Physics and Chemistry of Minerals, 29, 633–641.Google Scholar

  • Yamazaki, D., Ito, E., Yoshino, T., Tsujino, N., Yoneda, A., Guo, X., Xu, F., Higo, Y., and Funakoshi, K. (2014) Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite. Physics of the Earth and Planetary Interiors, 228, 262–267.Google Scholar

  • Yang, R., and Wu, Z. (2014) Elastic properties of stishovite and the CaCl2-type silica at the mantle temperature and pressure: An ab initio investigation. Earth and Planetary Science Letters, 404, 14–21.Google Scholar

  • Yoneda, A., Corray, T., and Shatskiy, A. (2012) Single-crystal elasticity of stishovite: New experimental data obtained using high-frequency resonant ultrasound spectroscopy and a Gingham check structure model. Physics of the Earth and Planetary Interiors, 190–191, 80–86.Google Scholar

  • Zhang, J., Li, B., Utsumi, W., and Liebermann, R.C. (1996) In situ X-ray observations of the coesite–stishovite transition: Reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 23, 1–10.Google Scholar

About the article


Received: 2017-08-03

Accepted: 2018-02-08

Published Online: 2018-04-30

Published in Print: 2018-05-25


Citation Information: American Mineralogist, Volume 103, Issue 5, Pages 792–802, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2018-6267.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in