Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 103, Issue 5

Issues

Melting experiments on Fe–Si–S alloys to core pressures: Silicon in the core?

Shigehiko Tateno / Kei Hirose
  • Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
  • Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ryosuke Sinmyo
  • Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
  • Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guillaume Morard
  • Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Naohisa Hirao / Yasuo Ohishi
Published Online: 2018-04-30 | DOI: https://doi.org/10.2138/am-2018-6299

Abstract

Melting and subsolidus experiments were carried out on Fe–Si–S alloys (2.2–2.7 wt% Si + 2.0–2.1 wt% S) up to 146 GPa in a laser-heated diamond-anvil cell (DAC). The melting and subsolidus phase relations were examined on the basis of in situ synchrotron X-ray diffraction measurements and ex situ textural and chemical characterizations of recovered samples. The subsolidus phase assemblage changed from Fe-rich hexagonal closed-packed (hcp) phase + Fe3S into a single phase of hcp Fe–Si–S alloy above 80 GPa at ~2500 K. The melting curve was obtained on the basis of the appearance of diffuse X-ray scattering and/or melting texture found in the cross section of a recovered sample. Microprobe analyses of quenched molten samples showed that liquid Fe–Si–S coexisted with Fe-alloy solid, which is depleted in sulfur but enriched in silicon compared to the liquid. This result indicates that the liquid evolves toward a Si-poor and S-rich composition upon crystallization. Our data further suggest that the ternary eutectic liquid composition is Si-deficient and close to the tie line between the eutectic points in the Fe–Si and Fe–S binary systems at each pressure. The composition of Fe–Si–S liquid that accounts for the outer core density is outside the liquidus field of solid Fe at the inner core boundary (ICB) pressure. Accordingly, the solid alloy crystallizing from such an outer core liquid must be more enriched in silicon/sulfur than the coexisting liquid and thus cannot form the denser inner core required from seismic observations. Furthermore, neither liquid Fe–Si–C nor Fe–Si–O can crystallize a dense solid at the ICB.

These results reinforce the conclusion that silicon is not an important light element in the core.

Keywords: Core; light element; silicon; sulfur; high pressure; melting

References cited

  • Akahama, Y., and Kawamura, H. (2006) Pressure calibration of diamond anvil Raman gauge to 310 GPa. Journal of Applied Physics, 100, 043516.Google Scholar

  • Antonangeli, D., Siebert, J., Badro, J., Farber, D.L., Fiquet, G., Morard, G., and Ryerson, F.J. (2010) Composition of the Earth’s inner core from high-pressure sound velocity measurements in Fe–Ni–Si alloys. Earth and Planetary Science Letters, 295, 292–296.Google Scholar

  • Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P., and Morard, G. (2013) Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science, 340, 464–466.Google Scholar

  • Badro, J., Côté, A.S., and Brodholt, J.P. (2014) A seismologically consistent compositional model of Earth’s core. Proceedings of the National Academy of Sciences, 111, 7542–7545.Google Scholar

  • Brett, R., and Bell, P.M. (1969) Melting relations in the Fe-rich portion of the system Fe–FeS at 30 kb pressure. Earth and Planetary Science Letters, 6, 479–482.Google Scholar

  • Brown, J.M., and McQueen, R.G. (1986) Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. Journal of Geophysical Research, 91(B7), 7485–7494.Google Scholar

  • Campbell, A.J., Seagle, C.T., Heinz, D.L., Shen, G., and Prakapenka, V.B. (2007) Partial melting in the iron–sulfur system at high pressure: a synchrotron X-ray diffraction study. Physics of the Earth and Planetary Interiors, 162, 119–128.Google Scholar

  • Dewaele, A., and Torrent, M. (2013) Equation of state of α-Al2O3. Physical Review Letters B, 88, 064107.Google Scholar

  • Dewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., Dorogokupets, P.I., and Torrent, M. (2006) Quasihydrostatic equation of state of iron above 2 Mbar. Physical Review Letters, 97, 215504.Google Scholar

  • Fei, Y., and Brosh, E. (2014) Experimental study and thermodynamic calculations of phase relations in the Fe–C system at high pressure. Earth and Planetary Science Letters, 408, 155–162.Google Scholar

  • Fei, Y., Li, J., Bertka, C.M., and Prewitt, C.T. (2000) Structure type and bulk modulus of Fe3S, a new iron–sulfur compound. American Mineralogist, 85, 1830–1833.Google Scholar

  • Fischer, R.A., Campbell, A.J., Reaman, D.M., Miller, N.A., Heinz, D.L., Dera, P., and Prakapenka, V.B. (2013) Phase relations in the Fe–FeSi system at high pressures and temperatures. Earth and Planetary Science Letters, 373, 54–64.Google Scholar

  • Fischer, R.A., Campbell, A.J., Caracas, R., Reaman, D.M., Heinz, D.L., Dera, P., and Prakapenka, V.B. (2014) Equations of state in the Fe–FeSi system at high pressures and temperatures. Journal of Geophysical Research, 119, 2810–2827.Google Scholar

  • Fukai, Y. (1992) Some properties of the Fe–H system at high-pressure and temperatures, and their implications for the Earth’s core. In Y. Syono and M.H. Manghnani, Eds., High-Pressure Research: Application to Earth and Planetary Sciences, American Geophysical Union, Geophysics Monograph Series, 67, pp. 373–386.Google Scholar

  • Hirose, K., Labrosse, S., and Hernlund, J. (2013) Composition and state of the core. Annual Review of Earth and Planetary Sciences, 41, 657–691.Google Scholar

  • Hirose, K., Morard, G., Sinmyo, R., Umemoto, K., Hernlund, J., Helffrich, G., and Labrosse, S. (2017) Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature, 543, 99–102.Google Scholar

  • Huang, H., Wu, S., Hu, X., Wang, Q., Wang, X., and Fei, Y. (2013) Shock compression of Fe–FeS mixture up to 204 GPa. Geophysical Research Letters, 40, 687–691.Google Scholar

  • Ichikawa, H., Tsuchiya, T., and Tange, Y. (2014) The P-V-T equation of state and thermodynamic properties of liquid iron. Journal of Geophysical Research: Solid Earth, 119, 240–252.Google Scholar

  • Kamada, S., Ohtani, E., Terasaki, H., Sakai, T., Miyahara, M., Ohishi, Y., and Hirao, N. (2012) Melting relationships in the Fe–Fe3S system up to the outer core conditions. Earth and Planetary Science Letters, 359, 26–33.Google Scholar

  • Komabayashi, T., and Fei, Y. (2010) Internally consistent thermodynamic database for iron to the Earth’s core conditions. Journal of Geophysical Research: Solid Earth, 115, B03202.Google Scholar

  • Lesher, C.E., and Walker, D. (1988) Cumulate maturation and melt migration in a temperature gradient. Journal of Geophysical Research: Solid Earth, 93, 10295–10311.Google Scholar

  • Masters, T.G., and Gubbins, D. (2003) On the resolution of density within the Earth. Physics of the Earth and Planetary Interiors, 140, 159–167.Google Scholar

  • Morard, G., Andrault, D., Guignot, N., Sanloup, C., Mezouar, M., Petitgirard, S., and Fiquet, G. (2008a) In situ determination of Fe–Fe3S phase diagram and liquid structural properties up to 65 GPa. Earth and Planetary Science Letters, 272, 620–626.Google Scholar

  • Morard, G., Sanloup, C., Guillot, B., Fiquet, G., Mezouar, M., Perrillat, J.P., Garbarino, G., Mibe, K., Komabayashi, T., and Funakoshi, K. (2008b) In situ structural investigation of Fe–S–Si immiscible liquid system and evolution of Fe–S bond properties with pressure. Journal of Geophysical Research, 113, B10205.Google Scholar

  • Morard, G., Andrault, D., Guignot, N., Siebert, J., Garbarino, G., and Antonangeli, D. (2011) Melting of Fe–Ni–Si and Fe–Ni–S alloys at megabar pressures: implications for the core-mantle boundary temperature. Physics and Chemistry of Minerals, 38, 767–776.Google Scholar

  • Morard, G., Siebert, J., Andrault, D., Guignot, N., Garbarino, G., Guyot, F., and Antonangeli, D. (2013) The Earth’s core composition from high pressure density measurements of liquid iron alloys. Earth and Planetary Science Letters, 373, 169–178.Google Scholar

  • Morard, G., Andrault, D., Antonangeli, D., and Bouchet, J. (2014) Properties of iron alloys under the Earth’s core conditions, Comptes Rendus Geoscience, 346, 130–139.Google Scholar

  • Mori, Y., Ozawa, H., Hirose, K., Sinmyo, R., Tateno, S., Morard, G., and Ohishi, Y. (2017) Melting experiments on Fe–Fe3S system to 254 GPa. Earth and Planetary Science Letters, 464, 135–141.Google Scholar

  • Ohishi, Y., Hirao, N., Sata, N., Hirose, K., and Takata, M. (2008) Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8. High Pressure Research, 28, 163–173.Google Scholar

  • Ono, S., Oganov, A.R., Koyama, T., and Shimizu, H. (2006) Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: implications for the electrical conductivity of the base of the lower mantle. Earth and Planetary Science Letters, 246, 326–335.Google Scholar

  • Ozawa, H., Hirose, K., Suzuki, T., Ohishi, Y., and Hirao, N. (2013) Decomposition of Fe3S above 250 GPa. Geophysical Research Letters, 40, 4845–4849.Google Scholar

  • Ozawa, H., Hirose, K., Yonemitsu, K., and Ohishi, Y. (2016) High-pressure melting experiments on Fe–Si alloys and implications for silicon as a light element in the core. Earth and Planetary Science Letters, 456, 47–54.Google Scholar

  • Sakai, T., Ohtani, E., Kamada, S., Terasaki, H., and Hirao, N. (2012) Compression of Fe88.1Ni9.1S2.8 alloy up to the pressure of Earth’s inner core. Journal of Geophysical Research: Solid Earth, 117, B02210.Google Scholar

  • Sakairi, T., Ohtani, E., Kamada, S., Sakai, T., Sakamaki, T., and Hirao, N. (2017) Melting relations in the Fe–S–Si system at high pressure and temperature: implications for the planetary core. Progress in Earth and Planetary Science, 4, 10.Google Scholar

  • Sakamaki, K., Takahashi, E., Nakajima, N., Nishihara, Y., Funakoshi, K., Suzuki, T., and Fukai, Y. (2009) Melting phase relation of FeHx up to 20 GPa: implication for the temperature of the Earth’s core. Physics of the Earth and Planetary Interiors, 174, 192–201.Google Scholar

  • Sanloup, C., and Fei, Y. (2004) Closure of the Fe–S–Si liquid miscibility gap at high pressure. Physics of the Earth and Planetary Interiors, 147, 57–65.Google Scholar

  • Sata, N., Hirose, K., Shen, G., Nakajima, Y., Ohishi, Y., and Hirao, N. (2010) Compression of FeSi, Fe3C, Fe0.95O, and FeS under the core pressures and implication for light element in the Earth’s core. Journal of Geophysical Research: Solid Earth, 115, B09204.Google Scholar

  • Seto, Y., Nishio-Hamane, D., Nagai, T., and Sata, N. (2010) Development of a software suite on X-ray diffraction experiments. The Review of High Pressure Science and Technology, 20, 269–276.Google Scholar

  • Shearer, P.M., and Masters, T.G. (1990) The density and shear velocity contrast at the inner core boundary. Geophysical Journal International, 102, 491–498.Google Scholar

  • Shibazaki, Y., Terasaki, H., Ohtani, E., Tateyama, R., Nishida, K., Funakoshi, K., and Higo, Y. (2014) High-pressure and high-temperature phase diagram for Fe0.9Ni0.1–H alloy. Physics of the Earth and Planetary Interiors, 228, 192–201.Google Scholar

  • Stewart, A.J., Schmidt, M.W., van Westrenen, W., and Liebske, C. (2007) Mars: a new core–crystallization regime. Science, 316, 1323–1325.Google Scholar

  • Tateno, S., Sinmyo, R., Hirose, K., and Nishioka, H. (2009) The advanced ion-milling method for preparation of thin film using Ion Slicer: application to a sample recovered from diamond-anvil cell. Review of Scientific Instruments, 80, 013901.Google Scholar

  • Tateno, S., Kuwayama, Y., Hirose, K., and Ohishi, Y. (2015) The structure of Fe–Si alloy in Earth’s inner core. Earth and Planetary Science Letters, 418, 11–19.Google Scholar

  • Umemoto, K., and Hirose, K. (2015) Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations. Geophysical Research Letters, 42, 7513–7520.Google Scholar

  • Umemoto, K., Hirose, K., Imada, S., Nakajima, Y., Komabayashi, T., Tsutsui, S., and Baron, A.Q.R. (2014) Liquid iron–sulfur alloys at outer core conditions by first-principles calculations. Geophysical Research Letters, 41, 6712–6717.Google Scholar

  • Wood, B.J. (1993) Carbon in the core? Earth and Planetary Science Letters, 117, 593–607.Google Scholar

About the article

Received: 2017-09-10

Accepted: 2018-01-29

Published Online: 2018-04-30

Published in Print: 2018-05-25


Citation Information: American Mineralogist, Volume 103, Issue 5, Pages 742–748, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2018-6299.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in