Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 103, Issue 9


Disturbance of the Sm-Nd isotopic system by metasomatic alteration: A case study of fluorapatite from the Sin Quyen Cu-LREE-Au deposit, Vietnam

Xiao-Chun Li / Mei-Fu Zhou / Yue-Heng Yang
  • State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xin-Fu Zhao
  • State Key Laboratory of Geological Processes and Mineral Resources, and Faculty of Earth Resources, China University of Geosciences, Wuhan, 430074, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jian-Feng Gao
  • State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-28 | DOI: https://doi.org/10.2138/am-2018-6501


The Neoproterozoic (840 Ma) Sin Quyen deposit in northwestern Vietnam contains replacement Cu-LREE-Au orebodies in Proterozoic metasedimentary rocks. In this deposit, LREE-bearing minerals include allanite-(Ce), monazite-(Ce), chevkinite-(Ce), and fluorapatite. Fluorapatite from orebodies has undergone variable degrees of metasomatic alteration. Samarium-neodymium isotopic analyses were conducted on altered fluorapatite, and also on allanite-(Ce) and monazite-(Ce), to investigate whether such metasomatism can affect the Sm-Nd isotope system.

Allanite-(Ce) and monazite-(Ce) have 147Sm/144Nd ratios ranging from 0.0359 to 0.0549, and 143Nd/144Nd ratios from 0.51147 to 0.51172. Their initial 143Nd/144Nd values at the time of mineralization range from 0.51126 to 0.51148, but mostly cluster between 0.51135 and 0.51145. Thus, the primary ore-forming fluids were relatively homogeneous in their Sm-Nd isotopic compositions. In the 147Sm/144Nd vs. 143Nd/144Nd diagram, the compositions of allanite-(Ce) and monazite-(Ce) generally plot along a Sm-Nd isochron of 840 Ma, implying that the Sm-Nd isotopic systems of these minerals were either closed or only slightly modified. In contrast, altered fluorapatite crystals have 147Sm/144Nd ratios varying from 0.0667 to 0.1348, and 143Nd/144Nd ratios from 0.51160 to 0.51199. The calculated initial 143Nd/144Nd ratios range widely from 0.51114 to 0.51141, with most values lower than those of the allanite-(Ce) and monazite-(Ce). In the 147Sm/144Nd vs. 143Nd/144Nd diagram, their compositions mostly plot below the 840-Ma Sm-Nd isochron. Petrographic observations and trace elemental analyses show that metasomatic modification of fluorapatite grains led to increases of their Sm/Nd ratios. The unaltered domains in the grains have Sm/Nd ratios varying from 0.114 to 0.200, with an average value of 0.161; whereas the altered domains have Sm/Nd ratios varying from 0.111 to 0.254, with an average value of 0.183. The increased Sm/Nd ratios can cause the calculated initial 143Nd/144Nd ratios to be lower than actual initial isotopic ratios, and can also result in compositional deviations from the reference Sm-Nd isochron.

This study demonstrates that the traditionally assumed inert Sm-Nd isotopic system can be metasomatically disturbed due to changes in the Sm/Nd ratio. Therefore, care must be taken when interpreting the Sm-Nd isotopic data from apatite/apatite-rich rocks that have undergone metasomatic alteration.

Keywords: Apatite; metasomatic alteration; Sm-Nd isotopes

References cited

  • Bea, F. (1996) Residence of REE, Y., Th, and U in granites and crustal protoliths: Implications for the chemistry of crustal melts. Journal of Petrology, 37, 521–552.Google Scholar

  • Bonyadi, Z., Davidson, G.J., Mehrabi, B., Meffre, S., and Ghazban, F. (2011) Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry. Chemical Geology, 281, 253–269.Google Scholar

  • Chakhmouradian, A.R., Reguir, E.P., Zaitsev, A.N., Coueslan, C., Xu, C., Kynicky, J., Mumin, A.H., and Yang, P. (2017) Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos, 274–275, 188–213.Google Scholar

  • Fisher, C.M., McFarlane, C.R.M., Hanchar, J.M., Schmitz, M.D., Sylvester, P. J., Lam, R., and Longerich, H.P. (2011) Sm-Nd isotope systematics by laser ablation-multicollector-inductively coupled plasma mass spectrometry: Methods and potential natural and synthetic reference materials. Chemical Geology, 284, 1–20.Google Scholar

  • Foster, G.L., and Carter, A. (2007) Insights into the patterns and locations of erosion in the Himalaya—A combined fission-track and in situ Sm-Nd isotopic study of detrital apatite. Earth and Planetary Science Letters, 257, 407–418.Google Scholar

  • Goldoff, B., Webster, J.D., and Harlov, D.E. (2012) Characterization of fluorchlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. American Mieneralogist, 97, 1103–1115.Google Scholar

  • Hammerli, J., Kemp, A.I.S., and Spandler, C. (2014) Neodymium isotope equilibration during crustal metamorphism revealed by in situ microanalysis of REE-rich accessory minerals. Earth and Planetary Science Letters, 392, 133–142.Google Scholar

  • Harlov, D.E. (2015) Apatite: a fingerprint for metasomatic processses. Elements, 11, 171–176.Google Scholar

  • Harlov, D.E., and Förster, H.J. (2002) High-grade fluid metasomatism on both a local and regional scale: the Seward Peninsula, Alaska and the Val Strona di Omegna, Ivrea-Verbano zone, northern Italy. Part II: Phosphate mineral chemistry. Journal of Petrology, 43, 801–824.Google Scholar

  • Harlov, D.E., and Förster, H.J. (2003) Fluid-induced nucleation of REE phosphate minerals in apatite: nature and experiment. Part II. Fluorapatite. American Mineralogist, 88, 1209–1229.Google Scholar

  • Harlov, D.E., Andersson, U.B., Förster, H.J., Nyström, J.O., Dulski, P., and Broman, C. (2002a) Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chemical Geology, 191, 47–72.Google Scholar

  • Harlov, D.E., Förster, H.J., and Nijland, T.G. (2002b) Fluid-induced nucleation of REE-phosphate minerals in apatite: nature and experiment. Part I. Chlorapatite. American Mineralogist, 87, 245–261.Google Scholar

  • Harlov, D.E., Wirth, R., and Förster, H.J. (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150, 268–286.Google Scholar

  • Heidarian, H., Lentz, D.R., Alirezaei, S., McFarlane, C.R.M., and Peighambari, S. (2018) Multiple stage ore formation in the Chadormalu Iron Deposit, Bafq Metallogenic Province, Central Iran: Evidence from BSE imaging and apatite EPMA and LA-ICP-MS U-Pb geochronology. Minerals, 8, 87.Google Scholar

  • Henderson, A.L., Foster, G.L., and Najman, Y. (2010) Testing the application of in situ Sm-Nd isotopic analysis on detrital apatites: A provenance tool for constraining the timing of India-Eurasia collision. Earth and Planetary Science Letters, 297, 42–49.Google Scholar

  • Hughes, J.M., and Rakovan, J.F. (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements, 11, 165–170.Google Scholar

  • Janots, E., Austrheim, H., Spandler, C., Hammerli, J., Trepmann, C.A., Berndt, J., Magnin, V., and Kemp, A. (2018) Rare earth elements and Sm-Nd isotope redistribution in apatite and accessory minerals in retrogressed lower crust material (Bergen Arcs, Norway). Chemical Geology, 484, 120–135.Google Scholar

  • Jochum, K.P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A.W. (2005) GeoReM: A new geochemical database for reference materials and isotopic standards. Geostandards and Geoanalytical Research, 29, 333–338.Google Scholar

  • Klemme, S., and Dalpe, C. (2003) Trace-element partitioning between apatite and carbonatite melt. American Mineralogist, 88, 639–646.Google Scholar

  • Li, X.C., and Zhou, M.F. (2015) Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China. Geochimica et Cosmochimica Acta, 166, 53–73.Google Scholar

  • Li, X.C., and Zhou, M.F. (2017) Hydrothermal alteration of monazite-(Ce) and chevkinite-(Ce) from the Sin Quyen Fe-Cu-LREE-Au deposit, northwestern Vietnam. American Mineralogist, 102, 1525–1541.Google Scholar

  • Li, X.C., Zhao, J.H., Zhou, M.F., Gao, J.F., Sun, W.H., and Tran, M.D. (2018a) Neoproterozoic granitoids from the Phan Si Pan belt, Northwest Vietnam: Implication for the tectonic linkage between Northwest Vietnam and the Yangtze Block. Precambrian Research, 209, 212–230.Google Scholar

  • Li, X.C., Zhou, M.F., Chen, W.T., Zhao, X.F., and Tran, M.D. (2018b) Uranium-lead dating of hydrothermal zircon and monazite from the Sin Quyen Fe-Cu-REE-Au-(U) deposit, northwestern Vietnam. Mineralium Deposita, 53, 399–416.Google Scholar

  • Liu, Z.C., Wu, F.Y., Yang, Y.H., Yang, J.H., and Wilde, S.A. (2012) Neodymium isotopic compositions of the standard monazites used in U-Th-Pb geochronology. Chemical Geology, 334, 221–239.Google Scholar

  • McLean, R.N. (2001) The Sin Quyen iron oxide-copper-gold-rare earth oxide mineralization of North Vietnam. In T.M. Porter, Ed., Hydrothermal Iron Oxide Copper–Gold & Related Deposits: A Global Perspective, vol. 2, p. 293–301. PGC Publishing, Adelaide.Google Scholar

  • Migdisov, A.A., Williams-Jones, A.E., and Wagner, T. (2009) An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300°C. Geochimica et Cosmochimica Acta, 73, 7087–7109.Google Scholar

  • Pan, Y., and Fleet, M.E. (2002) Composition of the apatite-group minerals: substitution mechanisms and controlling factors. In M.J. Kohn, J. Rakovan, and J.M. Hughes, Eds., Phosphates: Geochemical, Geobiological, and Materials Importance, 48, p. 13–49. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virgnia.Google Scholar

  • Prowatke, S., and Klemme, S. (2006) Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimica Acta, 70, 4513–4527.Google Scholar

  • Roeder, P.L., MacArthur, D., Ma, X.P., Palmer, G.R., and Mariano, A.N. (1987) Cathodoluminescence and microprobe study of rare-earth elements in apatite. American Mineralogist, 72, 801–811.Google Scholar

  • Schoneveld, L., Spandler, C., and Hussey, K. (2015) Genesis of the central zone of the Nolans Bore rare earth element deposit, Northern Territory, Australia. Contributions to Mineralogy and Petrology, 170, 11.Google Scholar

  • Stosch, H.G., Romer, R.L., Daliran, F., and Rhede, D. (2011) Uranium-lead ages of apatite from iron oxide ores of the Bafq District, East-Central Iran. Mineralium Deposita, 46, 9–21.Google Scholar

  • Ta, V.D. et al. (1975) The geological report on detailed exploration of the Sin Quyen copper deposit. General Department of Geology, Hanoi (unpublished).Google Scholar

  • Watson, E.B., and Green, T.H. (1981) Apatite/liquid partition coefficients for the rare-earth elements and strontium. Earth and Planetary Science Letters, 56, 405–421.Google Scholar

  • White, W.M. (2014) Isotope Geochemistry, 498 p. Wiley.Google Scholar

  • Wu, F. Y., Yang, Y.H., Li, Q.L. Mitchell, R.H., Dawson, J.B., Brandl, G., and Yuhara, M. (2011) In-situ determination of U–Pb ages and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite Complex, South Africa. Lithos, 127, 309–322.Google Scholar

  • Wu, F.Y., Arzamastsev, A.A., Mitchell, R.H., Li, Q.L., Sun, J., Yang, Y.H., and Wang, R.C. (2013) Emplacement age and Sr–Nd isotopic compositions of the Afrikanda alkaline ultramafic complex, Kola Peninsula, Russia. Chemical Geology, 353, 210–229.Google Scholar

  • Yang, Y.H., Wu, F. Y., Yang, J.H., Chew, D.M., Xie, L.W., Chu, Z.Y., Zhang, Y.B., and Huang, C. (2014) Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology. Chemical Geology, 385, 35–55.Google Scholar

  • Yardley, B.W.D. (2012) The chemical composition of metasomatic fluids in the crust. In D.E. Harlov and H. Austrheim, Eds., Metasomatism and the Chemical Transformation of Rock, p. 17–53. Springer.Google Scholar

  • Zeng, L.P., Zhao, X.F., Li, X.C., Hu, H., and McFarlane, C. (2016) In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, Eastern China: Constraints on fluid metasomatism. American Mineralogist, 101, 2468–2483.Google Scholar

About the article

Received: 2018-02-07

Accepted: 2018-05-04

Published Online: 2018-08-28

Published in Print: 2018-09-25

Citation Information: American Mineralogist, Volume 103, Issue 9, Pages 1487–1496, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2018-6501.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in