Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 104, Issue 1

Issues

Inefficient high-temperature metamorphism in orthogneiss

Timothy Chapman / Geoffrey L. Clarke
  • School of Geosciences, The University of Sydney, New South Wales 2006, New South Wales Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sandra Piazolo
  • ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, New South Wales 2109, New South Wales Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nathan R. Daczko
  • ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, New South Wales 2109, New South Wales Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-01-02 | DOI: https://doi.org/10.2138/am-2019-6503

Abstract

A novel method utilizing crystallographic orientation and mineral chemistry data, based on large-scale electron backscatter diffraction (EBSD) and microbeam analysis, quantifies the proportion of relict igneous and neoblastic minerals forming variably deformed high-grade orthogneiss. The Cretaceous orthogneiss from Fiordland, New Zealand, comprises intermediate omphacite granulite interlayered with basic eclogite, which was metamorphosed and deformed at T ≈ 850 °C and P ≈ 1.8 GPa after protolith cooling. Detailed mapping of microstructural and physiochemical relations in two strain profiles through subtly distinct intermediate protoliths indicates that up to 32% of the orthogneiss mineralogy is igneous, with the remainder being metamorphic. Domains dominated by igneous minerals occur preferentially in strain shadows to eclogite pods. Distinct metamorphic stages can be identified by texture and chemistry and were at least partially controlled by strain magnitude. At the grain-scale, the coupling of metamorphism and crystal plastic deformation appears to have permitted efficient transformation of an originally igneous assemblage. The effective distinction between igneous and metamorphic paragenesis and their links to deformation history enables greater clarity in interpretations of the makeup of the crust and their causal influence on lithospheric scale processes.

Keywords: Neoblasts; EBSD; recrystallization; strain; tectonometamorphism; microstructure; Understanding of Reaction and Deformation Microstructures

References cited

  • Allibone, A.H., Jongens, R., Turnbull, I.M., Milan, L.A., Daczko, N.R., De Paoli, M.C., and Tulloch, A.J. (2009) Plutonic rocks of western Fiordland, New Zealand: field relations, geochemistry, correlation and nomenclature. New Zealand Journal of Geology and Geophysics, 52, 379–415.Google Scholar

  • Austrheim, H., Erambert, M., and Engvik, A.K. (1997) Processing of crust in the root of the Caledonian contientnal collision zone: the role of eclogitization. Tectonophysics, 273, 129–153.Google Scholar

  • Betka, P.M., and Klepeis, K.A. (2013) Three-stage evolution of lower crustal gneiss domes at Breaksea Entrance, Fiordland, New Zealand. Tectonics, 32, 1084–1106.Google Scholar

  • Bradshaw, J.Y. (1989) Origin and metamorphic history of an Early Cretaceous polybaric granulite terrain, Fiordland, southwest New Zealand. Contributions to Mineralogy and Petrology, 103, 346–360.Google Scholar

  • Bunge, H.J. (1982). Texture Analysis in Materials Science. Butterworths, London.Google Scholar

  • Bürgmann, R., and Dresen, G. (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annual Reviews of Earth and Planetary Sciences, 36, 531–567.Google Scholar

  • Brenker, F.E., Prior, D.J., and Müller, W.F. (2002) Cation ordering in omphacite and effect on deformation mechanism and lattice preferred orientation (LPO). Journal of Structural Geology, 24, 1991–2005.Google Scholar

  • Chapman, T., Clarke, G.L., Daczko, N.R., Piazolo, S., and Rajkumar, A. (2015) Orthopyroxene–omphacite- and garnet–omphacite-bearing magmatic assemblages, Breaksea Orthogneiss, New Zealand: oxidation state controlled by high-P oxide fractionation. Lithos, 216-217, 1–16.Google Scholar

  • Chapman, T., Clarke, G.L., and Daczko, N.R. (2016) Crustal differentiation in a thickened arc—evaluating depth dependencies. Journal of Petrology, 57, 595–620.Google Scholar

  • Chapman, T., Clarke, G.L., Piazolo, S., and Daczko, N.R. (2017) Evaluating the importance of metamorphism in the foundering of continental crust. Scientific Reports 7, DOI:10.1038/s41598-017-13221-6.Google Scholar

  • Clarke, G.L., Daczko, N.R., and Miescher, D. (2013) Identifying relict igneous garnet and clinopyroxene in eclogite and granulite, Breaksea Orthogneiss, New Zealand. Journal of Petrology, 54, 1921–1938.Google Scholar

  • Cyprych, D., Piazolo, S., and Almqvist, B.S.G. (2017) Seismic anisotropy from compositional banding in granulites from the deep magmatic arc of Fiordland, New Zealand. Earth and Planetary Science Letters, 477, 156–167.Google Scholar

  • Daczko, N.R., and Halpin, J.A. (2009) Evidence for melt migration enhancing recrystallization of metastable assemblages in mafic lower crust, Fiordland, New Zealand. Journal of Metamorphic Geology, 27, 167–185.Google Scholar

  • De Paoli, M.C., Clarke, G.L., Klepeis, K.A., Allibone, A.H., and Turnbull, I.M. (2009) The eclogite–granulite transition: mafic and intermediate assemblages at Breaksea Sound, New Zealand. Journal of Petrology, 50, 2307–2343.Google Scholar

  • De Paoli, M.C., Clarke, G.L., and Daczko, N.R. (2012) Mineral equilibria modeling of the granulite–eclogite transition: effects of whole-rock composition on metamorphic facies type-assemblages. Journal of Petrology, 53, 949–970.Google Scholar

  • Droop, G.T.R. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431–435.Google Scholar

  • Flinn, D. (1965) On the symmetry principle and the deformation ellipsoid. Geological Magazine, 102, 36–45.Google Scholar

  • Green, D.H., and Ringwood, A.E. (1967) An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica et Cosmochimica Acta, 31, 767–833.Google Scholar

  • Holness, M.B. (2006) Melt-solid dihedral angles of common minerals in natural rocks. Journal of Petrology, 47, 791–800.Google Scholar

  • Holness, M.B., Clemens, J.D., and Vernon, R.H. (2018) How deceptive are microstructures in granitic rocks? Answers from integrated physical theory, phase equilibrium, and direct observations. Contributions to Mineralogy and Petrology, 173, 2–18.Google Scholar

  • Jackson, J.A., Austrheim, H., McKenzie, D., and Priestley, K. (2004) Metastability, mechanical strength, and the support of mountain belts. Geology, 32, 625–628.Google Scholar

  • Jamtveit, B., Austrheim, H., and Malthe-Sørenssen, A. (2000) Accelerated hydration of the Earth’s deep crust induced by stress perturbations. Nature, 408, 75–78.Google Scholar

  • Klepeis, K.A., King, D., De Paoli, M., Clarke, G.L. and Gehrels, G. (2007) Interaction of strong lower and weak middle crust during lithospheric extension in western New Zealand. Tectonics, 26, 1–27.Google Scholar

  • Klepeis, K.A., Schwartz, J., Stowell, H., and Tulloch, A.J. (2016) Gneiss domes, vertical and horizontal mass transfer, and the initiation of extension in the hot lower-crustal root of a continental arc, Fiordland, New Zealand. Lithosphere, 8, 116–140.Google Scholar

  • Kruse, R., Stünitz, H., and Kunze, K. (2001) Dynamic recrystallization processes in plagioclase porphyroclasts. Journal of Structural Geology, 23, 1111–1115.Google Scholar

  • Marmo, B.A., Clarke, G.L., and Powell, R. (2002) Fractionation of bulk rock composition due to porphyroblast growth: effects of eclogite facies mineral equilibria, Pam Peninsula, New Caledonia. Journal of Metamorphic Geology, 20, 151–165.Google Scholar

  • Mainprice, D., Hielscher, R., and Schaeben, H. (2011) Calculating anisotropic physical properties from texture data using the MTEX open-source package. In D.J. Prior, E.H. Rutter, and D.J. Tatham, Eds., Deformation Mechanisms, Rheology and Tectonics: Microstructures, mechanics and anisotropy, 360, 175–192. Geological Society of London Special Publication.Google Scholar

  • Milan, L.A., Daczko, N.R., Clarke, G.L., and Allibone, A.H. (2016) Complexity of in situ U Pb–Hf isotope systematics during arc magma genesis at the roots of a Cretaceous arc, Fiordland, New Zealand. Lithos, 264, 296–314.Google Scholar

  • Milan, L.A., Daczko, N.R. and Clarke, G.L. (2017) Cordillera Zealandia: A Mesozoic arc flare-up on the palaeo-Pacific Gondwana margin. Scientific Reports, doi:10.1038/s41598-017-00347-w.

  • Miranda, E.A., and Klepeis, K.A. (2016) The interplay and effects of deformation and crystallized melt on the rheology of the lower continental crust, Fiordland, New Zealand. Journal of Structural Geology, 93, 91–105.Google Scholar

  • Morimoto, N. (1989) Nomenclature of pyroxenes. Canadian Mineralogist, 27, 143–156.Google Scholar

  • Paterson, S.R., Vernon, R.H., and Tobisch, O.T. (1989) A review of criteria for the identification of magmatic and tectonic foliations in granitoids. Journal of Structural Geology, 11, 349–363.Google Scholar

  • Piazolo, S., Bestmann, M., Prior, D.J., and Spiers, C.J. (2006) Temperature dependent grain boundary migration in deformed-then-annealed material: observations from experimentally deformed synthetic rocksalt. Tectonophysics, 427, 55–71.Google Scholar

  • Piazolo, S., La Fontaine, A., Trimby, P., Harley, S., Yang, L., Armstrong, R., and Cairney, J. (2016) Deformation-induced trace element redistribution in zircon revealed using atom probe tomography. Nature Communications, 10490 (7 p.). DOI: .Crossref

  • Powell, R. Guiraud, M., and White, R.W. (2005) Truth and beauty in metamorphic phase equilibria: conjugate variables and phase diagrams. Canadian Mineralogist, 43, 21–33.Google Scholar

  • Prior, D.J., Boyle, A.P., Brenker, F., Cheadle, M.C., Day, A., Lopez, G., Peruzzo, L., Potts, G.J., Reddy, S., Spiess, R., and others. (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 84, 1741–1759.Google Scholar

  • Prior, D.J., Wheeler, J., Peruzzo, L., Spiess, R., and Storey, C. (2002) Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies. Journal of Structural Geology, 24, 999–1011.Google Scholar

  • Racek, M., Štípská, P., and Powell, R. (2008). Garnet–clinopyroxene intermediate granulites in the St. Leonhard massif of the Bohemian Massif: ultrahigh-temperature metamorphism at high pressure or not? Journal of Metamorphic Geology, 26, 253–271.Google Scholar

  • Satsukawa, T., Piazolo, S., González-Jiménez, J.M., Colás, V., Griffin, W.L., O’Reilly, S.Y., Gervilla, F., Fanlo, I., and Kerestedjian, T.N. (2015) Fluid-present deformation aids chemical modification of chromite: insights from chromites from Golyamo Kamenyane, SE Bulgaria. Lithos, 228-229, 78–89.Google Scholar

  • Štípská, P., and Powell, R. (2005) Does ternary feldspar constrain the metamorphic conditions of high-grade meta-igneous rocks? Evidence from orthopyroxene granulites. Bohemian Massif. Journal of Metamorphic Geology, 23, 627–647.Google Scholar

  • Stowell, H.H., Schwartz, J.J., Klepeis, K.A., Hout, C., Tulloch, A.J., and Koenig, A. (2017) Sm-Nd garnet ages for granulite and eclogite in the Breaksea Orthogneiss and widespread granulite facies metamorphism of the lower crust, Fiordland magmatic arc, New Zealand. Lithosphere, 9, 953–975. DOI: .CrossrefGoogle Scholar

  • Stünitz, H. (1998) Syndeformational recrystallization—dynamic or compositionally induced? Contributions to Mineralogy and Petrology, 131, 219–236.Google Scholar

  • Svahnberg, H., and Piazolo, S. (2010) The initiation of strain localization in plagioclase-rich rocks: insights from detailed microstructural analyses. Journal of Structural Geology, 32, 1404–1416.Google Scholar

  • Urai, J.L., Means, W.D., and Lister, G.S. (1986) Dynamic recrystallization of minerals. In B.E. Hobbs and H. C. Heard, Eds., Mineral and Rock Deformation (laboratory studies), 36, p. 161–200. Geophysical Monograph of the American Geophysical Union.Google Scholar

  • White, R.W., and Clarke, G.L. (1997) The role of deformation in aiding recrystallization: an example from a high-pressure shear zone, Central Australia. Journal of Petrology, 38, 1307–1329.Google Scholar

  • Williams, M.L., Dumond, G., Mahan, K., Regan, S., and Holland, M. (2014) Garnet-forming reactions in felsic orthogneiss: implications for densification and strengthening the lower crust. Earth and Planetary Science Letters, 405, 207–219.Google Scholar

  • Vernon, R.H., and Paterson, S.R. (2008) How extensive are subsolidus grain-shape changes in cooling granites? Lithos, 105, 42–50.Google Scholar

  • Vernon, R.H., White, R.W., and Clarke, G.L. (2008) False metamorphic events inferred from misinterpretation of microstructural evidence and P–T data. Journal of Metamorphic Geology, 26, 437–449.Google Scholar

  • Vernon, R.H., Collins, W.J., and Cook, N.D.J. (2012) Metamorphism and deformation of mafic and felsic rocks in a magma transfer zone, Stewart Island, New Zealand. Journal of Metamorphic Geology, 30, 473–488.Google Scholar

  • Yund, R.A., and Tullis, J. (1991) Compositional changes of minerals associated with dynamic recrystallization. Contributions to Mineralogy and Petrology, 108, 346–355.Google Scholar

About the article

Current address: School of Earth and Environment, University of Leeds, U.K.

‡ Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html


Received: 2018-02-08

Accepted: 2018-10-01

Published Online: 2019-01-02

Published in Print: 2019-01-28


Citation Information: American Mineralogist, Volume 104, Issue 1, Pages 17–30, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6503.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in