Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 104, Issue 4

Issues

High-pressure behavior of liebenbergite: The most incompressible olivine-structured silicate

Dongzhou ZhangORCID iD: https://orcid.org/0000-0002-6679-892X / Yi Hu
  • Department of Geology and Geophysics, University of Hawaii at Manoa Honolulu, Hawaii, 96822, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jingui Xu
  • Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert T. Downs / Julia E. HammerORCID iD: https://orcid.org/0000-0002-5977-2932 / Przemyslaw K. Dera
  • Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, U.S.A.
  • Department of Geology and Geophysics, University of Hawaii at Manoa Honolulu, Hawaii, 96822, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-03-24 | DOI: https://doi.org/10.2138/am-2019-6680

Abstract

Nickel is an abundant element in the bulk earth, and nickel-dominant olivine, liebenbergite, is the only igneous nickel-rich silicate found in nature. In this study, we used high-pressure single-crystal diffraction to explore the compressional behavior of a synthetic liebenbergite sample up to 42.6 GPa at ambient temperature. Over the studied pressure range, the liebenbergite sample retains the orthorhombic Pbnm structure, and no phase transition is observed. A third-order Birch-Murnaghan equation of state was used to fit the pressure behavior of the unit-cell volume, lattice parameters, the polyhedral volume, and the average bond length within each polyhedron. The best-fit bulk modulus KT0 = 163(3) GPa and its pressure derivative KT0 = 4.5(3). We find that liebenbergite is the most incompressible olivine-group silicate reported thus far, and Ni2+ tends to increase the isothermal bulk modulus of both olivine- and spinel-structured silicates. Consequently, Ni-rich olivine has a higher density compared to Ni-poor olivine at the upper mantle P-T conditions; however enrichment of Ni in mantle olivine is generally too low to make this density difference relevant for fractionation or buoyancy.

Keywords: Olivine; Ni; high pressure; equation of states; single-crystal diffraction

References cited

  • Akaogi, M., Akimoto, S.I., Horioka, K., Takahashi, K.I., and Horiuchi, H. (1982) The system NiAl2O4-Ni2SiO4 at high-pressures and temperatures—Spinelloids with spinel-related structures. Journal of Solid State Chemistry, 44, 257–267.Google Scholar

  • Akimoto, S.-I., Fujisawa, H., and Katsura, T. (1965) The olivine-spinel transition in Fe2SiO4 and Ni2SiO4. Journal of Geophysical Research, 70, 1969–1977.Google Scholar

  • Allegre, C., Manhes, G., and Lewin, E. (2001) Chemical composition of the Earth and the volatility control on planetary genetics. Earth and Planetary Science Letters, 185, 49–69.Google Scholar

  • Anderson, O.L. (1982) The Earth’s core and the phase diagram of iron. Philosophical Transactions of the Royal Society of London, Series A, 306, 21–35.Google Scholar

  • Anderson, D.L., and Anderson, O.L. (1970) The bulk modulus-volume relationship for oxides. Journal of Geophysical Research, 75, 3494–3500.Google Scholar

  • Andrault, D., Bouhifd, M.A., Itie, J.P., and Richet, P. (1995) Compression and amorphization of (Mg,Fe)2SiO4 olivines: an X-ray-diffraction study up to 70 GPa. Physics and Chemistry of Minerals, 22, 99–107.Google Scholar

  • Andrault, D., Bolfan-Casanova, N., Lo Nigro, G., Bouhifd, M.A., Garbarino, G., and Mezouar, M. (2011) Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history. Earth and Planetary Science Letters, 304, 251–259.Google Scholar

  • Armentrout, M., and Kavner, A. (2011) High pressure, high temperature equation of state for Fe2SiO4 ringwoodite and implications for the Earth’s transition zone. Geophysical Research Letters, 38.Google Scholar

  • Angel, R.J. (2000) Equations of state. Reviews in Mineralogy and Geochemistry, 41, 35–59.Google Scholar

  • Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie, 229, 405–419.Google Scholar

  • Angel, R.J., Alvaro, M., and Nestola, F. (2018) 40 years of mineral elasticity: a critical review and a new parameterisation of equations of state for mantle olivines and diamond inclusions. Physics and Chemistry of Minerals, 45, 95–113.Google Scholar

  • Back, M., Birch, W.D., Bojar, H.-P., Carter, J., Ciriotti, M.E., de Fourestier, J., Dolivo-Dobrovolsky, D., Downs, R.T., Grew, E.S., Fascio, L., and others. (2017) The New IMA List of Minerals. International Mineralogical Association.Google Scholar

  • Bass, J.D., Weidner, D.J., Hamaya, N., Ozima, M., and Akimoto, S. (1984) Elasticity of the olivine and spinel polymorphs of Ni2SiO4. Physics and Chemistry of Minerals, 10, 261–272.Google Scholar

  • Baur, W. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 1195–1215.Google Scholar

  • Bickmore, B.R., Craven, O., Wander, M.C., Checketts, H., Whitmer, J., Shurtleff, C., Yeates, D., Ernstrom, K., Andros, C., and Thompson, H. (2017) Bond valence and bond energy. American Mineralogist, 102, 804–812.Google Scholar

  • Birle, J.D., Gibbs, G.V., Moore, P.B., and Smith, J.V. (1968) Crystal Structures of Natural Olivines. American Mineralogist, 53, 807–824.Google Scholar

  • Bostrom, D. (1987) Single-crystal X-ray diffraction studies of synthetic Ni-Mg olivine solid solutions. American Mineralogist, 72, 965–972.Google Scholar

  • Brown, I.D., Klages, P., and Skowron, A. (2003) Influence of pressure on the lengths of chemical bonds. Acta Crystallographica, B59(4), 439–448.Google Scholar

  • Burns, R.G. (1973) The partitioning of trace transition elements in crystal structures: a provocative review with applications to mantle geochemistry. Geochimica et Cosmochimica Acta, 37, 2395–2403.Google Scholar

  • Campbell, F.E., and Roeder, P. (1968) The stability of olivine and pyroxene in the Ni-Mg-Si-O system. American Mineralogist, 53, 257–268.Google Scholar

  • Clague, D.A. (1987) Hawaiian xenolith populations, magma supply rates, and development of magma chambers. Bulletin of Volcanology 49, 577–587.Google Scholar

  • De Waal, S.A., and Calk, L.C. (1973) Nickel Minerals from Barberton, South Africa: VI. Liebenbergite, a Nickel Olivine. American Mineralogist, 58, 733–735.Google Scholar

  • Dera, P., Zhuravlev, K., Prakapenka, V., Rivers, M.L., Finkelstein, G.J., Grubor-Urosevic, O., Tschauner, O., Clark, S.M., and Downs, R.T. (2013) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Pressure Research, 33, 466–484.Google Scholar

  • Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339–341.Google Scholar

  • Downs, R.T., Zha, C.-S., Duffy, T.S., and Finger, L.W. (1996) The equation of state of forsterite to 17.2 GPa and effects of pressure media. American Mineralogist, 81, 51–55.Google Scholar

  • Dziewonski, A.M., and Anderson, D.L. (1981) Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25, 297–356.Google Scholar

  • Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104, 9182–9186.Google Scholar

  • Finger, L.W., Hazen, R.M., and Yagi, T. (1979) Crystal structures and electron densities of nickel and iron silicate spinels at elevated temperature or pressure. American Mineralogist, 64, 1002–1009.Google Scholar

  • Finkelstein, G.J., Dera, P.K., Jahn, S., Oganov, A.R., Holl, C.M., Meng, Y., and Duffy, T.S. (2014) Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. American Mineralogist, 99, 35–43.Google Scholar

  • Fischer, R.A., Nakajima, Y., Campbell, A.J., Frost, D.J., Harries, D., Langenhorst, F., Miyajima, N., Pollok, K., and Rubie, D.C. (2015) High pressure metal– silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochimica et Cosmochimica Acta, 167, 177–194.Google Scholar

  • Frost, D.J. (2008) The Upper Mantle and Transition Zone. Elements, 4, 171–176.Google Scholar

  • Gentile, A.L., and Roy, R. (1960) Isomorphism and crystalline solubility in the garnet family. American Mineralogist, 45, 701–711.Google Scholar

  • Griffin, W.L., Cousens, D.R., Ryan, C.G., Sie, S.H., and Suter, G.F. (1989) Ni in Chrome Pyrope Garnets—a New Geothermometer. Contributions of Mineralogy and Petrology, 103, 199–202.Google Scholar

  • Hart, S.R., and Davis, K.E. (1978) Nickel Partitioning between olivine and silicate melt. Earth and Planetary Science Letters, 40, 203–219.Google Scholar

  • Hazen, R.M. (1976) Effects of temperature and pressure on the crystal structure of forsterite. American Mineralogist, 61, 1280–1293.Google Scholar

  • Hazen, R.M. (1977) Effects of temperature and pressure on the crystal structure of ferromagnesian olivine. American Mineralogist, 62, 286–295.Google Scholar

  • Hazen, R.M. (1993) Comparative compressibilities of silicate spinels: Anomalous behavior of (Mg, Fe)2SiO4. Science, 259, 206–206.Google Scholar

  • Hazen, R.M., and Finger, L.W. (1979) Bulk modulus-volume relationship for cation-anion polyhedra. Journal of Geophysical Research 84(B12), 6723–6728.Google Scholar

  • Hazen, R.M., Downs, R.T., Finger, L.W., and Ko, J. (1993) Crystal chemistry of ferromagnesian silicate spinels: Evidence for Mg-Si disorder. American Mineralogist, 78, 1320–1323.Google Scholar

  • Hazen, R.M., Downs, R.T., and Finger, L.W. (1996) High-pressure crystal chemistry of LiScSiO4: An olivine with nearly isotropic compression. American Mineralogist, 81, 327–334.Google Scholar

  • Herzberg, C. (1992) Depth and degree of melting of komatiites. Journal of Geophysical Research, 97(B4), 4521–4540.Google Scholar

  • Herzberg, C. (2006) Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature, 444, 605–609.Google Scholar

  • Herzberg, C., Vidito, C., and Starkey, N.A. (2016) Nickel-cobalt contents of olivine record origins of mantle peridotite and related rocks. American Mineralogist, 101, 1952–1966.Google Scholar

  • Ishimaru, S., and Arai, S. (2008) Nickel enrichment in mantle olivine beneath a volcanic front. Contributions to Mineralogy and Petrology, 156, 119–131.Google Scholar

  • Jollands, M.C., Burnham, A.D., O’Neill, H.St.C., Hermann, J., and Qian, Q. (2016) Beryllium diffusion in olivine: A new tool to investigate timescales of magmatic processes. Earth and Planetary Science Letters, 450, 71–82.Google Scholar

  • Korenaga, J., and Kelemen, P.B. (2000) Major element heterogeneity in the mantle source of the North Atlantic igneous province. Earth and Planetary Science Letters, 184, 251–268.Google Scholar

  • Kroll, H., Kirfel, A., and Heinemann, R. (2014) Axial thermal expansion and related thermophysical parameters in the Mg,Fe olivine solid-solution series. European Journal of Mineralogy, 26, 607–621.Google Scholar

  • Kudoh, Y., and Takéuchi, Y. (1985) The crystal structure of forsterite Mg2SiO4 under high pressure up to 149 kb. Zeitschrift für Kristallographie-Crystalline Materials, 171, 291–302.Google Scholar

  • Lager, G.A., and Meagher, E.P. (1978) High-temperature structural study of six olivines. American Mineralogist, 63, 365–377.Google Scholar

  • Li, J., and Agee, C.B. (1996) Geochemistry of mantle-core differentiation at high pressure. Nature, 381, 686–689.Google Scholar

  • Lin, C.C. (2001) High-pressure Raman spectroscopic study of Co- and Ni-olivines. Physics and Chemistry of Minerals, 28, 249–257.Google Scholar

  • Liu, L.G. (1975) Disproportionation of Ni2SiO4 to stishovite plus bunsenite at high-pressures and temperatures. Earth and Planetary Science Letters, 24, 357–362.Google Scholar

  • Liu, L., Bassett, W.A., and Takahashi, T. (1974) Isothermal compression of a spinel phase of Co2SiO4 and magnesian ilmenite. Journal of Geophysical Research, 79, 1171–1174.Google Scholar

  • Lynn, K.J., Shea, T., and Garcia, M.O. (2017) Nickel variability in Hawaiian olivine: Evaluating the relative contributions from mantle and crustal processes. American Mineralogist, 102, 507–518.Google Scholar

  • Mao, H.K., Takahashi, T., Bassett, W.A., Weaver, J.S., and Akimoto, S.I. (1969) Effect of pressure and temperature on the molar volumes of wüstite and of three (Fe, Mg)2SiO4 spinel solid solutions. Journal of Geophysical Research, 74, 1061–1069.Google Scholar

  • Mao, H.-K., Takahashi, T., and Bassett, W.A. (1970) Isothermal compression of the spinel phase of Ni2SiO4 up to 300 kilobars at room temperature. Physics of the Earth and Planetary Interiors, 3, 51–53.Google Scholar

  • Matzen, A.K., Baker, M.B., Beckett, J.R., and Stolper, E.M. (2013) The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. Journal of Petrology, 54, 2521–2545.Google Scholar

  • Matzen, A.K., Baker, M.B., Beckett, J.R., and Stolper, E.M. (2017) The effect of liquid composition on the partitioning of Ni between olivine and silicate melt. Contributions to Mineralogy and Petrology, 172, 3.Google Scholar

  • McDonough, W.F. (2014) Compositional model for the earth’s core. In K.K. Turekian, Ed., Treatise on Geochemistry (2nd ed.), pp. 559–577. Elsevier.Google Scholar

  • McDonough, W.F., and Sun, S.S. (1995) The composition of the Earth. Chemical Geology, 120, 223–253.Google Scholar

  • Meng, Y., Fei, Y., Weidner, D.J., Gwanmesia, G.D., and Hu, J. (1994) Hydrostatic compression of γ-Mg2SiO4 to mantle pressures and 700 K: Thermal equation of state and related thermoelastic properties. Physics and Chemistry of Minerals, 21, 407–412.Google Scholar

  • Mizukami, S., Ohtani, A., Kawai, N., and Ito, E. (1975) High-pressure X-ray diffraction studies on β-and γ-Mg2SiO4. Physics of the Earth and Planetary Interiors, 10, 177–182.Google Scholar

  • Momma, K., and Izumi, F. (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653–658.Google Scholar

  • Mysen, B.O. (1979) Nickel partitioning between olivine and silicate melt—Henry’s Law Revisited. American Mineralogist, 64, 1107–1114.Google Scholar

  • Nestola, F., Boffa Ballaran, T., Koch-Müller, M., Balic-Zunic, T., Taran, M., Olsen, L., Princivalle, F., Secco, L., and Lundegaard, L. (2010) New accurate compression data for γ-Fe2SiO4. Physics of the Earth and Planetary Interiors, 183, 421–425.Google Scholar

  • Nestola, F., Nimis, P., Ziberna, L., Longo, M., Marzoli, A., Harris, J.W., Manghnani, M.H., and Fedortchouk, Y. (2011a) First crystal-structure determination of olivine in diamond: Composition and implications for provenance in the Earth’s mantle. Earth and Planetary Science Letters, 305, 249–255.Google Scholar

  • Nestola, F., Pasqual, D., Smyth, J., Novella, D., Secco, L., Manghnani, M., and Negro, A.D. (2011b) New accurate elastic parameters for the forsterite-fayalite solid solution. American Mineralogist, 96, 1742–1747.Google Scholar

  • Ozima, M. (1976) Growth of nickel olivine single crystals by the flux method. Journal of Crystal Growth, 33, 193–195.Google Scholar

  • Palme, H., and O’Neill, H.St.C. (2014) Cosmochemical estimates of mantle composition. In K.K. Turekian, Ed., Treatise on Geochemistry (2nd ed.), pp. 1–39. Elsevier.Google Scholar

  • Poe, B.T., Romano, C., Nestola, F., and Smyth, J.R. (2010) Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Physics of the Earth and Planetary Interiors, 181, 103–111.Google Scholar

  • Pu, X., Lange, R.A., and Moore, G. (2017) A comparison of olivine-melt thermometers based on DMg and DNi: The effects of melt composition, temperature, and pressure with applications to MORBs and hydrous arc basalts. American Mineralogist, 102, 750–765.Google Scholar

  • Putirka, K., Ryerson, F.J., Perfit, M., and Ridley, W.I. (2011) Mineralogy and composition of the oceanic mantle. Journal of Petrology, 52, 279–313.Google Scholar

  • Qin, F., Wu, X., Zhang, D., Qin, S., and Jacobsen, S.D. (2017) Thermal equation of state of natural Ti-bearing clinohumite. Journal of Geophysical Research: Solid Earth, 122(11), 8943–8951.Google Scholar

  • Ringwood, A.E. (1959) On the chemical evolution and densities of the planets. Geochimica et Cosmochimica Acta, 15, 257–283.Google Scholar

  • Ringwood, A.E. (1962) Prediction and confirmation of olivine-spinel transition in Ni2SiO4. Geochimica et Cosmochimica Acta, 26, 457–469.Google Scholar

  • Rivers, M., Prakapenka, V.B., Kubo, A., Pullins, C., Holl, C.M., and Jacobsen, S.D. (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Pressure Research, 28, 273–292.Google Scholar

  • Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic Elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567–570.Google Scholar

  • Sato, H. (1977a) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos, 10, 113–120.Google Scholar

  • Sato, Y. (1977b) Equation of state of mantle minerals determined through high-pressure X-ray study. High Pressure Research: Applications in Geophysics, 307–312.Google Scholar

  • Shannon, R.D. (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar

  • Sharp, Z.D., Hazen, R.M., and Finger, L.W. (1987) High-pressure crystal-chemistry of monticellite, CaMgSiO4. American Mineralogist, 72, 748–755.Google Scholar

  • Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.Google Scholar

  • Siebert, J., Badro, J., Antonangeli, D., and Ryerson, F.J. (2012) Metal–silicate partitioning of Ni and Co in a deep magma ocean. Earth and Planetary Science Letters, 321-322, 189–197.Google Scholar

  • Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.L., Danyushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O., and others. (2007) The amount of recycled crust in sources of mantle-derived melts. Science, 316, 412–417.Google Scholar

  • Speziale, S., Duffy, T.S., and Angel, R.J. (2004) Single-crystal elasticity of fayalite to 12 GPa. Journal of Geophysical Research-Solid Earth, 109, B12202.Google Scholar

  • Straub, S.M., LaGatta, A.B., Pozzo, A.L.M.D., and Langmuir, C.H. (2008) Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochemistry, Geophysics, Geosystems, 9, Q03007.Google Scholar

  • Thompson, R.M., and Downs, R.T. (2001) Quantifying distortion from ideal closest-packing in a crystal structure with analysis and application. Acta Crystallographica, B57, 119–127.Google Scholar

  • Wilburn, D., and Bassett, W. (1976) Isothermal compression of spinel (Fe2SiO4) up to 75 kbar under hydrostatic conditions. High Temperatures-High Pressures, 8, 343–348.Google Scholar

  • Will, G., Hoffbauer, W., Hinze, E., and Lauterjung, J. (1986) The compressibility of forsterite up to 300 kbar measured with synchrotron radiation. Physica B+C, 139, 193–197.Google Scholar

  • Xu, J., Zhang, D., Fan, D., Downs, R.T., Hu, Y., and Dera, P.K. (2017) Isosymmetric pressure-induced bonding increase changes compression behavior of clinopyroxenes across jadeite-aegirine solid solution in subduction zones. Journal of Geophysical Research: Solid Earth, 122, B13502.Google Scholar

  • Zha, C.-S., Duffy, T.S., Downs, R.T., Mao, H.-K., and Hemley, R.J. (1998) Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth and Planetary Science Letters, 159, 25–33.Google Scholar

  • Zhang, L. (1998) Single crystal hydrostatic compression of (Mg,Mn,Fe,Co)2SiO4 olivines. Physics and Chemistry of Minerals, 25, 308–312.Google Scholar

  • Zhang, D.Z., Hu, Y., and Dera, P.K. (2016a) Compressional behavior of omphacite to 47 GPa. Physics and Chemistry of Minerals, 43, 707–715.Google Scholar

  • Zhang, J.S., Hu, Y., Shelton, H., Kung, J., and Dera, P. (2016b) Single-crystal X-ray diffraction study of Fe2SiO4 fayalite up to 31 GPa. Physics and Chemistry of Minerals, 44, 171–179.Google Scholar

  • Zhang, D.Z., Dera, P.K., Eng, P.J., Stubbs, J.E., Zhang, J.S., Prakapenka, V.B., and Rivers, M.L. (2017) High pressure single crystal diffraction at PX^2. Journal of Visual Experiments, e54660.Google Scholar

About the article

Received: 2018-06-09

Accepted: 2018-12-21

Published Online: 2019-03-24

Published in Print: 2019-04-24


Funding This work was performed at GeoSoilEnviroCARS (Sector 13), Partnership for Extreme Crystallography program (PX^2), Advanced Photon Source (APS), and Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1634415) and Department of Energy-Geosciences (DE-FG02-94ER14466). PX^2 program and the COMPRES-GSECARS gas loading system are supported by COMPRES under NSF Cooperative Agreement EAR-1661511. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-C02-6CH11357. Development of ATREX IDL software is supported under National Science Foundation Grant EAR-1440005. Use of the COMPRES-GSECARS gas loading system was supported by COMPRES and GSECARS. Participation of PD. and Y.H. in this project were supported by NSF Grant EAR-1722969.


Citation Information: American Mineralogist, Volume 104, Issue 4, Pages 580–587, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6680.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in