Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 104, Issue 5


The effect of coordination changes on the bulk moduli of amorphous silicates: The SiO2-TiO2 system as a test case

Quentin Williams / Murli H. Manghnani
  • Hawaii Institute of Geophysics & Planetology, University of Hawaii, Honolulu, Hawaii 96822, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Teruyuki Matsui
Published Online: 2019-04-26 | DOI: https://doi.org/10.2138/am-2019-6729


The elasticity of a sequence of SiO2-TiO2 glasses is examined at high pressures and temperatures. A primary goal is to determine how the previously proposed substitution of fivefold-coordinated Ti at low concentrations of Ti and fourfold-coordinated Ti at higher concentrations affects the elastic properties of these glasses. The effect of changing Ti content on the bulk moduli of these glasses is monotonic, and no systematic effect of possible coordination changes is observed. In contrast, there is an apparent decrease in the pressure derivative of the bulk modulus above ~3 wt% TiO2. This change occurs at a similar composition to that at which a transition from predominantly fivefold to fourfold of Ti has been proposed to occur in these glasses. Hence, this shift in the pressure derivative of the bulk modulus is attributed to a stiffening of the equation of state of these glasses generated by the substitution of fivefold Ti species relative to TiO4 units. Our results provide rationales for the onset of coordination changes producing a minimal change in the equation of state of silicate melts/glasses, and for bulk moduli determined at ambient pressure producing relatively accurate silicate melt volumes even within liquids that have begun to undergo coordination changes. Thus, our results support the general validity of single equation of state formulations that describe the densities of silicate melts through the transition zone and shallow lower mantle.

Keywords: Glasses; elasticity; ultrasonics; coordination changes; polymerized silicates

References cited

  • Ai, Y., and Lange, R.A. (2008) New acoustic velocity measurements on CaO-MgO-Al2O3-SiO2 liquids: Reevaluation of the volume and compressibility of CaMgSi2O6-CaAl2Si2O8 liquids to 25 GPa. Journal of Geophysical Research, 113, B04203.Google Scholar

  • Allwardt, J.R., Schmidt, B.C., and Stebbins, J.F. (2004) Structural mechanisms of compression and decompression in high-pressure K2Si4O9 glasses: An investigation utilizing Raman and NMR spectroscopy of glasses and crystalline materials. Chemical Geology, 213, 137–151.Google Scholar

  • Allwardt, J.R., Stebbins, J.F., Schmidt, B.C., Frost, D.J., Withers, A.C., and Hirschmann, M.M. (2005) Aluminum coordination and the densification of high-pressure aluminosilicate glasses. American Mineralogist, 90, 1218–1222.Google Scholar

  • Andrault, D., Bolfan-Casanova, N., Lo Nigro, G., Bouhifd, M.A., Garbarino, G., and Mezouar, M. (2011) Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history. Earth and Planetary Science Letters, 304, 251–259.Google Scholar

  • Andreatch, P., and McSkimin, H.J. (1976) Pressure dependence of ultrasonic wave velocities and elastic stiffness moduli for a TiO2-SiO2 glass (Corning 7971). Journal of Applied Physics, 47, 1299–1301.Google Scholar

  • Asimow, P., and Ahrens, T.J. (2010) Shock compression of liquid silicates to 125 GPa: The anorthite-diopside join. Journal of Geophysical Research, 115, B10209.Google Scholar

  • Bauchy, M., Guillot, B., Micoulaut, M., and Sator, N. (2013) Viscosity and viscosity anomalies of model silicates and magmas: A numerical investigation. Chemical Geology, 346, 47–56.Google Scholar

  • Boukare, C.E., Ricard, Y., and Fiquet, G. (2015) Thermodynamics of the MgO-FeO-SiO2 system up to 140 GPa: Application to the crystallization of Earth’s magma ocean. Journal of Geophysical Research, 120, 6085–6101.Google Scholar

  • Chandrasekhar, H.R., Chandrasekhar, M., and Manghnani, M.H. (1979) Phonons in titanium-doped vitreous silica. Solid State Communications, 31, 329–333.Google Scholar

  • Dingwell, D.B., Paris, E., Seifert, F., Mottana, A., and Romano, C. (1994) X‑ray absorption study of Ti-bearing silicate glass. Physics and Chemistry of Minerals, 21, 501–509.Google Scholar

  • Efthimiopoulos, I., Palles, D., Richter S., Hoppe, U., Moncke, D., Wondraczek, L., Nolte, S., and Kamitsos, E.I. (2018) Femtosecond laser-induced transformations in ultra-low expansion glass: Microstructure and local density variations by vibrational spectroscopy. Journal of Applied Physics, 123, 233105.Google Scholar

  • Farber, D.L., and Williams, Q. (1996) An in situ Raman spectroscopic study of Na2Si2O5 at high pressures and temperatures: Structures of compressed liquids and glasses. American Mineralogist, 81, 273–283.Google Scholar

  • Farges, F. (1997) Coordination of Ti4+ in silicate glasses: A high resolution XANES spectroscopy study at the Ti K-edge. American Mineralogist, 82, 36–43.Google Scholar

  • Farges, F., Brown, G.E., Navrotsky, A., Gan, H., and Rehr, J.J. (1996) Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure. Geochimica et Cosmochimica Acta, 60, 3039–3053.Google Scholar

  • Fukui, H., and Hiraoka, N. (2018) Electronic and local atomistic structure of MgSiO3 glass under pressure: A study of X‑ray Raman scattering at the silicon and magnesium L-edges. Physics and Chemistry of Minerals, 45, 211–218.Google Scholar

  • Ghiorso, M.S. (2004) (2004) An equation of state for silicate melts: Formulation of a general model. American Journal of Science, 304, 637–678.Google Scholar

  • Gonzalez-Oliver, C.J.R., James, P.F., and Rawson, H. (1982) Silica and silicatitania glasses prepared by the sol-gel process. Journal of Non-Crystalline Solids, 48, 129–152.Google Scholar

  • Greegor, R.B., Lytle, F.W., Sandstrom, D.R., Wong, J., and Schultz, P. (1983) Investigation of TiO2-SiO2 glasses by X‑ray absorption spectroscopy. Journal of Non-Crystalline Solids, 55, 27–43.Google Scholar

  • Henderson, G.S., Liu, X., and Fleet, M.E. (2002) A Ti L-edge X‑ray absorption study of Ti-silicate glasses. Physics and Chemistry of Minerals, 29, 32–42.Google Scholar

  • Henderson, G.S., Liu, X., and Fleet, M.E. (2003) Titanium coordination in silicate glasses investigated using O K-edge X‑ray absorption spectroscopy. Mineralogical Magazine, 67, 597–607.Google Scholar

  • Hirao, K., Tanaka, K., Furukawa, S., and Soga, N. (1995) Anomalous temperature dependence of the sound velocities of SiO2-TiO2 glasses. Journal of Materials Science Letters, 14, 697–699.Google Scholar

  • Huang, L., and Kieffer, J. (2004) Amorphous-amorphous transitions in silica glass. I. Reversible transitions and thermomechanical anomalies. Physical Review B, 69, 224203.Google Scholar

  • Hushur, A., Manghnani, M.H., Williams, Q., and Dingwell, D.B. (2013) A high-temperature Brillouin scattering study on four compositions of haplogranitic glasses and melts: High-frequency elastic behavior through the glass transition. American Mineralogist, 98, 367–375.Google Scholar

  • Karasinski, P., Tyszkiewicz, C., Maciaga, A., Kityk, I.V., and Gondek, E. (2015) Two-component waveguide SiO2TiO2 films fabricated by sol-gel technology for optoelectronic applications. Journal of Materials Science, 26, 2733–2736.Google Scholar

  • Liang, Y., Miranda, C.R., and Scandolo, S. (2007) Mechanical strength and coordination defects in compressed silica glass: Molecular dynamics simulations. Physical Review B, 75, 024205.Google Scholar

  • Liu, Q., and Lange, R.A. (2001) The partial molar volume and thermal expansivity of TiO2 in alkali silicate melts: Systematic variation with Ti coordination. Geochimica et Cosmochimica Acta, 65, 2379–2392.Google Scholar

  • Liu, J., and Lin, J.-F. (2014) Abnormal acoustic wave velocities in basaltic and (Fe-Al)-bearing silicate glasses at high pressure. Geophysical Research Letters, 41, 8832–8839.Google Scholar

  • Liu, Q., Lange, R.A., and Ai, Y. (2007) Acoustic velocity measurements on Na2O-TiO2-SiO2 liquids: Evidence for a highly compressible TiO2 component related to five-coordinated Ti. Geochimica et Cosmochimica Acta, 71, 4314–4326.Google Scholar

  • Manghnani, M.H. (1972) Pressure and temperature dependence of the elastic moduli of Na2O-TiO2-SiO2 glasses. Journal of the American Ceramic Society, 55, 360–365.Google Scholar

  • Manghnani, M.H., Sato, H., and Rai, C.S. (1986) Ultrasonic velocity and attenuation measurements on basalt melts to 1500°C: Role of composition and structure in the viscoelastic properties. Journal of Geophysical Research, 91, 9333–9342.Google Scholar

  • Miller, G.H., Stolper, E.M., and Ahrens, T. J. (1991) The equation of state of molten komatiite: 1. Shock wave compression to 36 GPa. Journal of Geophysical Research, 96, 11831–11848.Google Scholar

  • Murakami, M., and Bass, J.D. (2010) Spectroscopic evidence for ultrahigh-pressure polymorphism in SiO2 glass. Physical Review Letters, 104, 025504.Google Scholar

  • Murakami, M., and Bass, J.D. (2011) Evidence of denser MgSiO3 glass above 133 GPa and implications for remnants of ultradense melt from a deep magma ocean. Proceedings of the National Academy of Sciences, 108, 17286–17289.Google Scholar

  • Ponader, C.W., Boek, H., and Dickinson, J.E. Jr. (1996) X‑ray absorption study of the coordination of titanium in sodium-titanium-silicate glasses. Journal of Non-Crystalline Solids, 201, 81–94.Google Scholar

  • Reynard, B., and Webb, S. (1998) High-temperature Raman spectroscopy of Na2TiSi2O7 glass and melt: Coordination of Ti4+ and nature of the configurational changes in the liquid. European Journal of Mineralogy, 10, 49–58.Google Scholar

  • Rigden, S.M., Ahrens, T.J., and Stolper, E.M. (1989) High-pressure equation of state of molten anorthite and diopside. Journal of Geophysical Research, 94, 9508–9522.Google Scholar

  • Rivers, M.L., and Carmichael, I.S.E. (1987) Ultrasonic studies of silicate melts. Journal of Geophysical Research, 92, 9247–9270.Google Scholar

  • Sanchez-Valle, C., and Bass, J.D. (2010) Elasticity and pressure-induced structural changes in vitreous MgSiO3-enstatite to lower mantle pressures. Earth and Planetary Science Letters, 391, 288–295.Google Scholar

  • Sanloup, C., Drewitt, J.W.E., Konopkova, Z., Dalladay-Simpson, P., Morton, D.M., Rai, N., van Westrenen, W., and Morgenroth, W. (2013) Structural change in molten basalt at deep mantle conditions. Nature, 503, 104–107.Google Scholar

  • Scannell, G., Koike, A., and Huang, L. (2016) Structure and thermo-mechanical response of TiO2-SiO2 glasses to temperature. Journal of Non-Crystalline Solids, 447, 238–247.Google Scholar

  • Schultz, P.C. (1976) Binary titania-silica glasses containing 10 to 20 wt% TiO2 Journal of the American Ceramic Society, 59, 214–219.Google Scholar

  • Schultz, P. and Smyth, G.T. (1972) Ultra-low expansion glasses and their structure in the SiO2-TiO2 system. In R.W. Douglas and B. Ellis, Eds., Amorphous Materials, p. 453–461. Wiley-Interscience.Google Scholar

  • Secco, R.A., Manghnani, M.H., and Liu, T.-C. (1991) Velocities and compressibililities of komatiitic melts. Geophysical Research Letters, 18, 1397–1400.Google Scholar

  • Shim, S.-H., and Catalli, K. (2009) Compositional dependence of structural transition pressures in amorphous phases with mantle-related compositions. Earth and Planetary Science Letters, 283, 174–180.Google Scholar

  • Spera, F.J., Ghiorso, M.S., and Nevins, D. (2011) Structure, thermodynamic and transport properties of liquid MgSiO3 Comparison of molecular models and laboratory results. Geochimica et Cosmochimica Acta, 75, 1272–1296.Google Scholar

  • Stixrude, L., and Karki, B. (2005) Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science, 310, 297–299.Google Scholar

  • Tamura, T., Tanaka, S., and Kohyama, M. (2012) Full PAW calculations of XANES/ELNES spectra of Ti-bearing oxide crystals and TiO-SiO glasses: Relation between pre-edge peaks and Ti coordination. Physical Review B, 85, 205210.Google Scholar

  • Thomas, C., Liu, Q., Agee, C.B., Asimow, P.D., and Lange, R.A. (2012) Multi-technique equation of state for Fe2SiO4 melt and the density of Fe-bearing silicate melts form 0 to 161 GPa. Journal of Geophysical Research, 117, B10206.Google Scholar

  • Vacher, R., Pelous, J., Plicque, F., and Zermbowitch, A. (1981) Ultrasonic and Brillouin scattering study of the elastic properties of vitreous silica between 10 and 300 K. Journal of Non-Crystalline Solids, 45, 397–410.Google Scholar

  • Waff, H. (1975) Pressure-induced coordination changes in magmatic liquids. Gephysics Research Letters, 2, 193–196.Google Scholar

  • Williams, Q., and Jeanloz, R. (1988) Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science, 239, 902–905.Google Scholar

  • Xue, X., Stebbins, J.F., Kanzaki, M., McMillan, P.F., and Poe, B. (1991) Pressure-induced silicon coordination and tetrahedral structural changes in alkali oxide-silica melts up to 12 GPa: NMR, Raman, and infrared spectroscopy. American Mineralogist, 76, 8–26.Google Scholar

  • Yarger, J.L., Smith, K.H., Nieman, R.A., Diefenbacher, J., Wolf, G.H., Poe, B.T., and McMillan, P.F. (1995) Al coordination changes in high-pressure aluminosilicate liquids. Science, 270, 1964–1967.Google Scholar

  • Zha, C-S., Hemley, R.J., Mao, H.-K., Duffy, T.S., and Meade, C. (1994) Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Physical Review B, 50, 13,105–13,112.Google Scholar

About the article

Orcid 0000-0002-4798-5578

Received: 2018-07-12

Accepted: 2019-01-15

Published Online: 2019-04-26

Published in Print: 2019-05-27

Citation Information: American Mineralogist, Volume 104, Issue 5, Pages 679–685, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6729.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in