Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 104, Issue 5

Issues

A new occurrence of yimengite-hawthorneite and crichtonite-group minerals in an orthopyroxenite from kimberlite: Implications for mantle metasomatism

Dmitriy I. Rezvukhin
  • Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyuga Avenue, Novosibirsk 630090, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Taisia A. Alifirova
  • Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyuga Avenue, Novosibirsk 630090, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrey V. Korsakov
  • Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyuga Avenue, Novosibirsk 630090, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander V. Golovin
  • Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyuga Avenue, Novosibirsk 630090, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-29 | DOI: https://doi.org/10.2138/am-2019-6741

Abstract

Large-ion lithophile elements (LILE)-enriched chromium titanates of the magnetoplumbite (AM12O19) and crichtonite (ABC18T2O38) groups have been recognized as abundant inclusions in orthopyroxene grains in a mantle-derived xenolith from the Udachnaya-East kimberlite pipe, Daldyn field, Siberian craton. The studied xenolith consists of three parts: an orthopyroxenite, a garnet clinopyroxenite, and a garnet-orthopyroxene intermediate domain between the two. Within the host enstatite (Mg# 92.6) in the orthopyroxenitic part of the sample titanate inclusions are associated with Cr-spinel, diopside, rutile, Mg-Cr-ilmenite, and pentlandite. Crichtonite-group minerals also occur as acicular inclusions in pyrope grains of the intermediate domain adjacent to the orthopyroxenite, as well as in interstitial to enstatite oxide intergrowths together with Cr-spinel, rutile, and ilmenite.

Yimengite-hawthorneite inclusions in enstatite contain (wt%) 3.72–8.04 BaO, 2.05–3.43 K2O, and 0.06–0.48 CaO. Their composition is transitional between yimengite and hawthorneite end-members with most grains exhibiting K-dominant chemistry. A distinct feature of the studied yimengite-hawthorneite minerals is a high content of Al2O3 (5.74–7.69 wt%). Crichtonite-group minerals vary in compositions depending on the occurrence in the xenolith: inclusions in enstatite are moderate-high in TiO2 (62.9–67.1 wt%), moderately Cr-rich (12.6–14.0 wt% Cr2O3), Ba- or K-specific in the A site, and contain low ZrO2 (0.05–1.72 wt%), whereas inclusions in pyrope are moderate in TiO2 (61.7–63.3 wt% TiO2), relatively low in Cr (8.98–9.62 wt% Cr2O3), K-dominant in the A site, and are Zr-enriched (4.64–4.71 wt% ZrO2). Crichtonite-group minerals in polymineralic oxide intergrowths show highly diverse compositions even within individual aggregates, where they are chemically dominated by Ba, Ca, and Sr.

P-T estimates indicate the orthopyroxenite to have equilibrated at ~800 °C and 35 kbar. Preferentially oriented lamellae of enstatite-hosted Cr-spinel and diopside, as well as pyrope, diopside, and Cr-spinel grains developed around enstatite crystals, are interpreted to have been exsolved from the high-T Ca-Al-Cr-enriched orthopyroxene precursor. The exotic titanate compositions and observed textural relationships between inclusions in enstatite imply that the studied orthopyroxenite has undergone metasomatic processing by a mobile percolating agent afterward; this highly evolved melt/fluid was enriched in Ba, K, HFSE, and other incompatible elements. The infiltration of the metasomatizing liquid occurred through interstices and vulnerable zones of enstatite grains and manifested in the crystallization of titanate inclusions. It is assumed that Cr-spinel lamellae served as seeds for their nucleation and growth. The prominent textural and chemical inhomogeneity of the interstitial oxide intergrowths is either a consequence of the metasomatic oxide crystallization shortly prior to the kimberlite magma eruption or arose from the intensive modification of preexisting oxide clusters by the kimberlite melt during the Udachnaya emplacement. Our new data provide implications for the metasomatic treatment of orthopyroxenites in the subcontinental lithospheric mantle from the view of exotic titanate occurrences.

Keywords: Yimengite; hawthorneite; magnetoplumbite-group minerals; crichtonite- group minerals; Ti-oxide; xenolith; mantle metasomatism; Udachnaya kimberlite pipe

References cited

  • Abersteiner, A., Kamenetsky, V.S., Golovin, A.V., Kamenetsky, M., and Goemann, K. (2018) Was crustal contamination involved in the formation of the serpentine-free Udachnaya-East kimberlite? New insights into parental melts, liquidus assemblage and effects of alteration. Journal of Petrology, 59, 1467–1492.Google Scholar

  • Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Cherepanova, Y., and Sharygin, I.S. (2013) Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos, 160-161, 201–215.Google Scholar

  • Alifirova, T.A., Pokhilenko, L.N., Ovchinnikov, Y.I., Donnelly, C.L., Riches, A.J.V., and Taylor, L.A. (2012) Petrologic origin of exsolution textures in mantle minerals: evidence in pyroxenitic xenoliths from Yakutia kimberlites. International Geology Review, 54, 1071–1092.Google Scholar

  • Alifirova, T.A., Pokhilenko, L.N., and Korsakov, A.V. (2015) Apatite, SiO2 rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia. Lithos, 226, 31–49.Google Scholar

  • Almeida, V., Janasi, V., Svisero, D., and Nannini, F. (2014) Mathiasite-loveringite and priderite in mantle xenoliths from the Alto Paranaíba Igneous Province, Brazil: Genesis and constraints on mantle metasomatism. Central European Journal of Geosciences, 6, 614–632.Google Scholar

  • Bailey, D.K. (1982) Mantle metasomatism—Continuing chemical change within the Earth. Nature, 296, 525–530.Google Scholar

  • Boyd, F.R., Pokhilenko, N.P., Pearson, D.G., Mertzman, S.A., Sobolev, N.V., and Finger, L.W. (1997) Composition of the Siberian cratonic mantle: Evidence from Udachnaya peridotite xenoliths. Contributions to Mineralogy and Petrology, 128, 228–246.Google Scholar

  • Brey, G.P., and Köhler, T. (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353–1378.Google Scholar

  • Bulanova, G.P., Muchemwa, E., Pearson, D.G., Griffin, B.J., Kelley, S.P., Klemme, S., and Smith, C.B. (2004) Syngenetic inclusions of yimengite in diamond from Sese kimberlite (Zimbabwe)—evidence for metasomatic conditions of growth. Lithos, 77, 181–192.Google Scholar

  • Dawson, J.B. (1984) Contrasting types of upper mantle metasomatism? In J. Kornprobst, Ed., Kimberlites, II: The Mantle and Crust-Mantle Relationships, p. 289–294. Elsevier.Google Scholar

  • Dong, Z., Zhou, J., Lu, Q., and Peng, Z. (1984) Yimengite, K(Cr,Ti,Fe,Mg)12O19—a new mineral. Kexue Tongbao, 29, 920–923.Google Scholar

  • Doucet, L.S., Ionov, D.A., and Golovin, A.V. (2013) The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contributions to Mineralogy and Petrology, 165, 1225–1242.Google Scholar

  • Erlank, A.J., Waters, F.G., Hawkesworth, C.J., Haggerty, S.E., Allsopp, H.L., Rickard, R. S., and Menzies, M.A. (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In M.A. Menzies and C.J. Hawkesworth, Eds., Mantle Metasomatism, 221–311. Academic Press, London.Google Scholar

  • Foley, S., Höfer, H., and Brey, G. (1994) High-pressure synthesis of priderite and members of the lindsleyite-mathiasite and hawthorneite-yimengite series. Contributions to Mineralogy and Petrology, 117, 164–174.Google Scholar

  • Frey, F.A., and Green, D.H. (1974) The mineralogy, geochemistry and origin of Iherzolite inclusions in Victorian basanites. Geochimica et Cosmochimica Acta, 38, 1023–1059.Google Scholar

  • Gibson, S.A. (2017) On the nature and origin of garnet in highly-refractory Archean lithospheric mantle: Constraints from garnet exsolved in Kaapvaal craton orthopyroxenes. Mineralogical Magazine, 81, 781–809.Google Scholar

  • Giuliani, A., Phillips, D., Maas, R., Woodhead, J.D., Kendrick, M.A., Greig, A., Armstrong, R.A., Chew, D., Kamenetsky, V.S., and Fiorentini, M.L. (2014) LIMA U-Pb ages link lithospheric mantle metasomatism to Karoo magmatism beneath the Kimberley region, South Africa. Earth and Planetary Science Letters, 401, 132–147.Google Scholar

  • Giuliani, A., Woodhead, J.D., Phillips, D., Maas, R., Davies, G.R., and Griffin, W.L. (2018) Titanates of the lindsleyite-mathiasite (LIMA) group reveal isotope disequilibrium associated with metasomatism in the mantle beneath Kimberley (South Africa). Earth and Planetary Science Letters, 482, 253–264.Google Scholar

  • Golovin, A.V., Sharygin, I.S., Kamenetsky, V.S., Korsakov, A.V., and Yaxley, G.M. (2018) Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites. Chemical Geology, 483, 261–274.Google Scholar

  • Goncharov, A.G., Ionov, D.A., Doucet, L.S., and Pokhilenko, L.N. (2012) Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth and Planetary Science Letters, 357, 99–110.Google Scholar

  • Grégoire, M., Lorand, J.P., O’Reilly, S.Y., and Cottin, J.Y. (2000) Armalcolite-bearing, Ti-rich metasomatic assemblages in harzburgitic xenoliths from the Kerguelen Islands: Implications for the oceanic mantle budget of high-field strength elements. Geochimica et Cosmochimica Acta, 64, 673–694.Google Scholar

  • Grégoire, M., Bell, D.R., and Le Roex, A.P. (2003) Garnet lherzolites from the Kaapvaal craton (South Africa): Trace element evidence for a metasomatic history. Journal of Petrology, 44, 629–657.Google Scholar

  • Grey, I.E., Madsen, I.C., and Haggerty, S.E. (1987) Structure of a new upper-mantle, magnetoplumbite-type phase, Ba[Ti3Cr4Fe4Mg]O19 American Mineralogist, 72, 633–636.Google Scholar

  • Grey, I.E., Velde, D., and Criddle, A.J. (1998) Haggertyite, a new magnetoplumbite-type titanate mineral from the Prairie Creek (Arkansas) lamproite. American Mineralogist, 83, 1323–1329.Google Scholar

  • Griffin, W.L., Pearson, N.J., Andersen, T., Jackson, S.E., O’Reilly, S.Y., and Zhang, M. (2014) Sources of cratonic metasomatic fluids: In situ LA-MC-ICPMS analysis of Sr, Nd, Hf and Pb isotopes in LIMA from the Jagersfontein kimberlite. American Journal of Science, 314, 435–461.Google Scholar

  • Haggerty, S.E. (1975) The chemistry and genesis of opaque minerals in kimberlites. Physics and Chemistry of the Earth, 9, 295–307.Google Scholar

  • Haggerty, S.E. (1983) The mineral chemistry of new titanates from the Jagersfontein kimberlite, South Africa—implications for metasomatism in the upper mantle. Geochimica et Cosmochimica Acta, 47, 1833–1854.Google Scholar

  • Haggerty, S.E. (1988) Upper mantle opaque mineral stratigraphy and the genesis of metasomites and alkali-rich melts. Journal of the Geological Society of Australia, 14, 687–699.Google Scholar

  • Haggerty, S.E. (1989) Mantle metasomes and the kinship between carbonatites and kimberlites. In K. Bell, Ed., Carbonatites, p. 546–560. Unwin Hyman.Google Scholar

  • Haggerty, S.E. (1991) Oxide mineralogy of the upper mantle. In D.H. Lindsley, Ed., Oxide Minerals: Petrologic and Magnetic Significance, 25, p. 355–416. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Haggerty, S.E., Smyth, J.R., Erlank, A.J., Rickard, R.S., and Danchin, R.V. (1983) Lindsleyite (Ba) and mathiasite (K): two new chromium-titanates in the crichtonite series from the upper mantle. American Mineralogist, 68, 494–505.Google Scholar

  • Haggerty, S.E., Grey, I.E., Madsen, I.C., Criddle, A.J., Stanley, C.J., and Erlank, A.J. (1989) Hawthorneite, Ba[Ti3Cr4Fe4Mg]O19 A new metasomatic magnetoplumbite-type mineral from the upper mantle. American Mineralogist, 74, 668–675.Google Scholar

  • Harte, B. (1983) Mantle peridotites and processes: the kimberlite sample. In C.J. Hawkesworth and M.J. Norry, Eds., Continental Basalts and their Xenoliths, p. 46–91. Shiva, Nantwich.Google Scholar

  • Harte, B., Winterburn, P.A., and Gurney, J.J. (1987) Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. In M.A. Menzies and C.J. Hawkesworth, Eds., Mantle Metasomatism, p. 145–220. Academic Press.Google Scholar

  • Howarth, G.H., Barry, P.H., Pernet-Fisher, J.F., Baziotis, I.P., Pokhilenko, N.P., Pokhilenko, L.N., Bodnar, R.J., Taylor, L.A., and Agashev, A.M. (2014) Superplume metasomatism: Evidence from Siberian mantle xenoliths. Lithos, 184-187, 209–224.Google Scholar

  • Ionov, D.A., Gregoire, M., and Prikhod’ko, V.S. (1999) Feldspar–Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle. Earth and Planetary Science Letters, 165, 37–44.Google Scholar

  • Ionov, D.A., Doucet, L.S., and Ashchepkov, I.V. (2010) Composition of the lithospheric mantle in the Siberian craton: New constraints from fresh peridotites in the Udachnaya-East kimberlite. Journal of Petrology, 51, 2177–2210.Google Scholar

  • Jones, A.P. (1989) Upper-mantle enrichment by kimberlitic or carbonatitic magmatism. In K. Bell, Ed., Carbonatites, p. 448–463. Unwin Hyman.Google Scholar

  • Jones, A.P., Smith, J.V., and Dawson, J.B. (1982) Mantle metasomatism in 14 veined peridotites from Bultfontein mine, South Africa. The Journal of Geology, 90, 435–453.Google Scholar

  • Kalfoun, F., Ionov, D., and Merlet, C. (2002) HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth and Planetary Science Letters, 199, 49–65.Google Scholar

  • Kamenetsky, V.S., Golovin, A.V., Maas, R., Giuliani, A., Kamenetsky, M.B., and Weiss, Y. (2014) Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth-Science Reviews, 139, 145–167.Google Scholar

  • Kiviets, G., Phillips, D., Shee, S., Vercoe, S., Barton, E., Smith, C., and Fourie, L. (1998) 40Ar/39Ar dating of yimengite from Turkey Well kimberlite, Australia: The oldest and the rarest. Ext. Abstr. 7th International Kimberlite Conference, 432–434.Google Scholar

  • Konzett, J., Armstrong, R.A., and Gunther, D. (2000) Modal metasomatism in the Kaapvaal craton lithosphere: Constraints on timing and genesis from U-Pb zircon dating of metasomatized peridotites and MARID-type xenoliths. Contributions to Mineralogy and Petrology, 139, 704–719.Google Scholar

  • Konzett, J., Yang, H., and Frost, D.J. (2005) Phase relations and stability of magnetoplumbite- and crichtonite-series phases under upper-mantle P-T conditions: An experimental study to 15 GPa with implications for LILE metasomatism in the lithospheric mantle. Journal of Petrology, 46, 749–781.Google Scholar

  • Konzett, J., Wirth, R., Hauzenberger, C., and Whitehouse, M. (2013) Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: Evidence from a harzburgite containing a unique assemblage of metasomatic zirconium-phases. Lithos, 182-183, 165–184.Google Scholar

  • Lavrent’ev, Y.G., Korolyuk, V.N., Usova, L.V., and Nigmatulina, E.N. (2015) Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russian Geology and Geophysics, 56, 1428–1436.Google Scholar

  • Leost, I., Stachel, T., Brey, G.P., Harris, J.W., and Ryabchikov, I.D. (2003) Diamond formation and source carbonation: mineral associations in diamonds from Namibia. Contributions to Mineralogy and Petrology, 145, 15–24.Google Scholar

  • Litasov, K., Litasov, Y., Malkovets, V., and Taniguchi, H. (2006) Mineralogical study of interstitial phase assemblages in titaniferous peridotite xenoliths from Pliocene basanites of Vitim volcanic field (Transbaikalia, Russia). Northeast Asian Studies, 10, 161–175.Google Scholar

  • Lu, Q., and Chou, H. (1994) Newly discovered members of yimengite isomorphous series K(Ti5Fe3Cr2Mg212O19 and Ba(Ti5Fe4Mg2Cr)12O19 Acta Mineralogica Sinica, 14, 228–233.Google Scholar

  • Lu, Q., and Zhou, H. (1994) A new progress in research on mathiasite in Mengying, Shandong, III. Oxide minerals containing the large ions Cr, Ti and Fe in the upper mantle. Acta Mineralogica Sinica, 14, 343–347.Google Scholar

  • Lu, Q., Liu, H., and Xiao, P. (2007) Ca-yimengite, another new mineral in kimberlite, Shandong province. Geological Science and Technology Information, 26, 1–7.Google Scholar

  • Mair, P., Konzett, J., and Hauzenberger, C. (2010) Metasomatic titanates associated with Cl-rich amphibole and phlogopite in a multiply metasomatized garnet lherzolite from Letseng-la-Terae, Lesotho. The 20th General Meeting of the International Mineralogical Association, GP80G—Geochemistry and Petrology (general session), 525. Budapest, Hungary.Google Scholar

  • Mikhailenko, D.S., Korsakov, A.V., Rashchenko, S.V., Seryotkin, Y.V., Belakovskiy, D.I., and Golovin, A.V. (2018) Kuliginite, a new hydroxychloride mineral from the Udachnaya kimberlite pipe, Yakutia: Implications for low-temperature hydrothermal alteration of the kimberlites. American Mineralogist, 103, 1435–1444.Google Scholar

  • Nickel, K., and Green, D. (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth and Planetary Science Letters, 73, 158–170.Google Scholar

  • Nikolenko, E.I., Sharygin, I.S., Alifirova, T.A., Korsakov, A.V., Zelenovskiy, P.S., and Shur, V.Y. (2017) Graphite-bearing mineral assemblages in the mantle beneath Central Aldan superterrane of North Asian craton: Combined confocal micro-Raman and electron microprobe characterization. Journal of Raman Spectroscopy, 48, 1597–1605.Google Scholar

  • Nimis, P., and Grütter, H. (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contributions to Mineralogy and Petrology, 159, 411–427.Google Scholar

  • Nimis, P., and Taylor, W.R. (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatitein-Cpx thermometer. Contributions to Mineralogy and Petrology, 139, 541–554.Google Scholar

  • Nixon, P.H., and Condliffe, E. (1989) Yimengite of K-Ti metasomatic origin in kimberlitic rocks from Venezuela. Mineralogical Magazine, 53, 305–309.Google Scholar

  • O’Reilly, S.Y., and Griffin, W.L. (2013) Mantle Metasomatism. Metasomatism and the chemical transformation of rock, p. 471–533. Springer, Berlin.Google Scholar

  • Orlandi, P., Pasero, M., Duchi, G., and Olmi, F. (1997) Dessauite, (Sr,Pb)(Y,U) (Ti,Fe3+20O38 a new mineral of the crichtonite group from Buca della Vena mine, Tuscany, Italy. American Mineralogist, 82, 807–811.Google Scholar

  • Pearson, D.G., Shirey, S.B., Carlson, R.W., Boyd, F.R., Pokhilenko, N.P., and Shimizu, N. (1995) Re-Os, Sm-Nd and Rb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberia craton modified by multi-stage metasomatism. Geochimica et Cosmochimica Acta, 59, 959–977.Google Scholar

  • Rezvukhin, D.I., Malkovets, V.G., Sharygin, I.S., Tretiakova, I.G., Griffin, W.L., and O’Reilly, S.Y. (2018) Inclusions of crichtonite-group minerals in Cr-pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: Crystal chemistry, parageneses and relationships to mantle metasomatism. Lithos, 308-309, 181–195.Google Scholar

  • Scott, J.M., Liu, J., Pearson, D.G., and Waight, T.E. (2016) Mantle depletion and metasomatism recorded in orthopyroxene in highly depleted peridotites. Chemical Geology, 441, 280–291.Google Scholar

  • Sharygin, I.S., Golovin, A.V., and Pokhilenko, N.P. (2012) Djerfisherite in xenoliths of sheared peridotite in the Udachnaya-East pipe (Yakutia): Origin and relationship with kimberlitic magmatism. Russian Geology and Geophysics, 53, 247–261.Google Scholar

  • Shimizu, N., Pokhilenko, N.P., Boyd, F.R., and Pearson, D.G. (1997) Geochemical characteristics of mantle xenoliths from Udachnaya kimberlite pipe. Russian Geology and Geophysics, 38, 205–217.Google Scholar

  • Sobolev, N.V., Yefimova, E.S., Kaminsky, F.V., Lavrent’ev, Y.G., and Usova, L.V. (1988) Titanate of complex composition and phlogopite in the diamond stability field. In N.V. Sobolev, Ed., International Symposium “Composition and processes of deep-seated zones of continental lithosphere,” 185–186. Nauka, Novosibirsk.Google Scholar

  • Sobolev, N.V., Kaminsky, F.V., Griffin, W.L., Yefimova, E.S., Win, T.T., Ryan, C.G., and Botkunov, A.I. (1997) Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos, 39, 135–157.Google Scholar

  • Solov’eva, L.V., Yasnygina, T.A., and Egorov, K.N. (2012) Metasomatic parageneses in deep-seated xenoliths from pipes Udachnaya and Komsomol’skaya-Magnitnaya as indicators of fluid transfer through the mantle lithosphere of the Siberian craton. Russian Geology and Geophysics, 53, 1304–1323.Google Scholar

  • Spengler, D., Obata, M., Hirajima, T., Ottolini, L., Ohfuji, H., Tamura, A., and Arai, S. (2012) Exsolution of garnet and clinopyroxene from high-Al pyroxenes in Xugou peridotite, Eastern China. Journal of Petrology, 53, 1477–1504.Google Scholar

  • Taylor, W. (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrbuch für Mineralogie-Abhandlungen, 381–408.Google Scholar

  • Velde, D. (2000) Mineralogy of mafic xenoliths and their reaction zones in the olivine lamproite from Prairie Creek Arkansas and the paragenesis of haggertyite, Ba [Fe6Ti5Mg]O19 American Mineralogist, 85, 420–429.Google Scholar

  • Wang, L., Essene, E.J., and Zhang, Y. (1999) Mineral inclusions in pyrope crystals from Garnet Ridge, Arizona, USA: Implications for processes in the upper mantle. Contributions to Mineralogy and Petrology, 135, 164–178.Google Scholar

  • Wang, L., Rouse, R.C., Essene, E.J., Peacor, D.R., and Zhang, Y. (2000) Carmichaelite, a new hydroxyl-bearing titanate from Garnet Ridge, Arizona. American Mineralogist, 85, 792–800.Google Scholar

  • Waters, F.G., and Erlank, A.J. (1988) Assessment of the vertical extent and distribution of mantle metasomatism below Kimberley, South Africa. Journal of Petrology, 185–204.Google Scholar

  • Zhao, L. (1991) Ti-rich minerals and a new variety—chromian kennedyite from kimberlites in Eastern China. Geological Science and Technology Information, 10, 71–76.Google Scholar

  • Zhou, J., Yang, G., and Zhang, J. (1984) Mathiasite in a kimberlite from China. Acta Mineralogica Sinica, 9, 193–200.Google Scholar

  • Zhou, H., Lu, Q., Lei, X., and Liu, H. (1996) Geochemical similarity of kimberlite between China and South Africa from the view of Ti-oxide minerals of upper mantle. Earth Science, 21, 557–562.Google Scholar

  • Ziberna, L., Nimis, P., Zanetti, A., Marzoli, A., and Sobolev, N.V. (2013) Metasomatic processes in the central Siberian cratonic mantle: Evidence from garnet xenocrysts from the Zagadochnaya kimberlite. Journal of Petrology, 54, 2379–2409.Google Scholar

About the article

m.rezvukhin@gmail.com

*2

Received: 2018-07-20

Accepted: 2019-02-11

Published Online: 2019-04-29

Published in Print: 2019-05-27


FundingThis work was performed within the IGM SB RAS state assignment project supervised by the Ministry of Science and Higher Education of the Russian Federation. Financial support was provided by the grant of the President of the Russian Federation MK-2231.2017.5 (T.A.) and RFBR project no. 18-05-00643 (A.K., D.R.).


Citation Information: American Mineralogist, Volume 104, Issue 5, Pages 761–774, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6741.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in