Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 104, Issue 5

Issues

Geochemical characteristics of lawsonite blueschists in tectonic mélange from the Tavşanlı Zone, Turkey: Potential constraints on the origin of Mediterranean potassium-rich magmatism

Yu Wang
  • State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
  • ARC Centre of Excellence for Core to Crust Fluid Systems/GEMOC; Department of Earth and Planetary Sciences, Macquarie University, New South Wales 2109, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dejan Prelević
  • Faculty of Mining and Geology, Belgrade University, Đušina 7, 11000 Belgrade, Serbia
  • Institute for Geosciences, University of Mainz, Becherweg 21, Mainz 55099, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stephen F. Foley
  • ARC Centre of Excellence for Core to Crust Fluid Systems/GEMOC; Department of Earth and Planetary Sciences, Macquarie University, New South Wales 2109, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-26 | DOI: https://doi.org/10.2138/am-2019-6818

Abstract

The petrology, mineralogy, and geochemistry of lawsonite blueschists from the Tavşanlı zone in northwest Turkey—one of the best-preserved blueschist terranes in the world—have been comprehensively investigated. The blueschist samples contain lawsonite + sodic amphibole + phengite + chlorite + titanite + apatite ± aragonite ± quartz ± relict igneous pyroxene ± Mn-rich garnet and opaque phases. Lawsonite is a significant repository for Sr, Pb, Th, U, and REE, whereas phengite carries the most large-ion lithophile element (LILE), titanite hosts the highest Nb and Ta as well as considerable amounts of high field strength element (HFSE), and apatite strongly controls Sr. Two groups of blueschist have different origins—enriched continent-derived terrigenous origin and mid-ocean ridge basalts (MORB)-like submarine basalts—assigned on the basis of whole-rock major and trace element compositions and initial Sr-Nd-Pb isotopic results. Lawsonite in blueschist with enriched origin exhibits strong Th/La fractionation, raising the possibility of the involvement of blueschist facies mélange to explain the origin of Mediterranean potassium-rich magmatism because similarly high Th/La ratios are also observed in the Mediterranean potassium-rich lavas. We propose that subduction-induced tectonic imbrication took place entirely at shallow depths (<80 km), giving rise to a newly formed lithosphere where oceanic and continental crustal materials, sediments, strongly depleted peridotite blocks, and metamorphic rocks are all imbricated together, and in which many of the compositional characteristics of the lawsonite blueschist are sequestered. Subsequent melting of the fertile and enriched components in this new lithosphere would result in the generation of potassium-rich post-collisional mafic magmas with diagnostic geochemical affinities.

Keywords: Lawsonite blueschist; Sr-Nb-Pb isotope; protolith of blueschist; the Tavşanlı zone; K-rich magmatism; high Th/La

References cited

  • Agard, P., Yamato, P., Jolivet, L., and Burov, E. (2009) Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth-Science Reviews, 92(1-2), 53–79.Google Scholar

  • Altunkaynak, Ş., and Genç, Ş.C. (2008) Petrogenesis and time-progressive evolution of the Cenozoic continental volcanism in the Biga Peninsula, NW Anatolia (Turkey). Lithos, 102(1-2), 316–340.Google Scholar

  • Baur, W.H. (1978) Crystal structure refinement of lawsonite. American Mineralogist, 63, 311–315.Google Scholar

  • Becker, H., Jochum, K.P., and Carlson, R.W. (2000) Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chemical Geology, 163(1), 65–99.Google Scholar

  • Beinlich, A., Klemd, R., John, T., and Gao, J. (2010) Trace-element mobilization during Ca-metasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid–rock interaction. Geochimica et Cosmochimica Acta, 74(6), 1892–1922.Google Scholar

  • Belousova, E., Griffin, W.L., O’Reilly, S.Y., and Fisher, N.L. (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5), 602–622.Google Scholar

  • Bernard-Griffiths, J., Carpenter, M.S.N., Peucat, J.J., and Jahn, B.M. (1986) Geochemical and isotopic characteristics of blueschist facies rocks from the Île de Groix, Armorican Massif (northwest France). Lithos, 19(3), 235–253.Google Scholar

  • Bulle, F., Bröcker, M., Gärtner, C., and Keasling, A. (2010) Geochemistry and geochronology of HP mélanges from Tinos and Andros, cycladic blueschist belt, Greece. Lithos, 117(1-4), 61–81.Google Scholar

  • Çelik, Ö.F., Chiaradia, M., Marzoli, A., Özkan, M., Billor, Z., and Topuz, G. (2016) Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides, Northern Turkey). Tectonophysics, 672, 34–49.Google Scholar

  • Çetinkaplan, M., Candan, O., Oberhänsli, R., and Bousquet, R. (2008) Pressure-temperature evolution of lawsonite eclogite in Sivrihisar; Tavşanlı Zone-Turkey. Lithos, 104(1-4), 12–32.Google Scholar

  • Cloos, M., and Shreve, R.L. (1988) Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure and Applied Geophysics, 128(3-4), 455–500.Google Scholar

  • Collins, A. S., and Robertson, A.H.F. (1997) Lycian melange, southwestern Turkey: an emplaced Late Cretaceous accretionary complex. Geology, 25(3), 255–258.Google Scholar

  • Conticelli, S. (1998) The effect of crustal contamination on ultrapotassic magmas with lamproitic affinity: mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, Central Italy. Chemical Geology, 149(1), 51–81.Google Scholar

  • Conticelli, S., D’Antonio, M., Pinarelli, L., and Civetta, L. (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from Roman Province and Southern Tuscany. Mineralogy and Petrology, 74(2-4), 189–222.Google Scholar

  • Davis, P.B., and Whitney, D.L. (2006) Petrogenesis of lawsonite and epidote eclogite and blueschist, Sivrihisar Massif, Turkey. Journal of Metamorphic Geology, 24(9), 823–849.Google Scholar

  • Dubacq, B., and Plunder, A. (2018) Controls on trace element distribution in oxides and silicates. Journal of Petrology, 59(2), 233–256.Google Scholar

  • Ernst, W.G. (1988) Tectonic history of subduction zones inferred from retrograde blueschist P-T paths. Geology, 16, 1081–1084.Google Scholar

  • Fornash, K.F., Cosca, M.A., and Whitney, D.L. (2016) Tracking the timing of subduction and exhumation using 40Ar/39Ar phengite ages in blueschist- and eclogite-facies rocks (Sivrihisar, Turkey). Contributions to Mineralogy and Petrology, 171(7), 67.Google Scholar

  • Fotoohi Rad, G.R., Droop, G.T.R., Amini, S., and Moazzen, M. (2005) Eclogites and blueschists of the Sistan Suture Zone, eastern Iran: A comparison of P-T histories from a subduction mélange. Lithos, 84(1-2), 1–24.Google Scholar

  • Fryer, P., Wheat, C.G., and Mottl, M.J. (1999) Mariana blueschist mud volcanism: Implications for conditions within the subduction zone. Geology, 27(2), 103–106.Google Scholar

  • Galer, S.J.G. (1999) Optimal double and triple spiking for high precision lead isotopic measurement. Chemical Geology, 157(3), 255–274.Google Scholar

  • Ge, M.-h., Zhang, J.-j., Liu, K., Ling, Y.-y., Wang, M., and Wang, J.-m. (2016) Geochemistry and geochronology of the blueschist in the Heilongjiang Complex and its implications in the late Paleozoic tectonics of eastern NE China. Lithos, 261, 232–249.Google Scholar

  • Gieré, R., and Sorensen, S.S. (2004) Allanite and other REE-rich epidote-group minerals. Reviews in Mineralogy and Geochemistry, 56, 431–493.Google Scholar

  • Goffe, B., Michard, A., Kienast, J.R., and Le Mer, O. (1988) A case of obduction-related high-pressure, low-temperature metamorphism in upper crustal nappes, Arabian continental margin, Oman: P-T paths and kinematic interpretation. Tectonophysics, 151, 363–386.Google Scholar

  • Göncüoglu, M.C., Yalınız, M.K., and Tekin, U.K. (2006) Geochemistry, tectono-Magmatic discrimination and radiolarian ages of basic extrusives within the Izmir-Ankara Suture Belt (NW Turkey): Time constraints for the Neotethyan evolution. Ofioliti, 31(1), 25–38.Google Scholar

  • Göncüoglu, M.C., Sayit, K., and Tekin, U.K. (2010) Oceanization of the northern Neotethys: Geochemical evidence from ophiolitic melange basalts within the İzmir–Ankara suture belt, NW Turkey. Lithos, 116(1), 175–187.Google Scholar

  • Gonzalez, C.M., Gorczyk, W., and Gerya, T.V. (2015) Decarbonation of subducting slabs: Insight from petrological–thermomechanical modeling. Gondwana Research, 36, 314–332.Google Scholar

  • Guo, Z. et al. (2014) The role of subduction channel mélanges and convergent subduction systems in the petrogenesis of post-collisional K-rich mafic magmatism in NW Tibet. Lithos, 198-199, 184–201.Google Scholar

  • Haggerty, S.E., Fung, A.T., and Burt, D.M. (1994) Apatite, phosphorus and titanium in eclogitic garnet from the upper mantle. Geophysical Research Letters, 21(16), 1699–1702.Google Scholar

  • Harris, R.A., Sawyer, R.K., and Audley-Charles, M.G. (1998) Collisional melange development: Geologic associations of active melange-forming processes with exhumed melange facies in the western Banda orogen, Indonesia. Tectonics, 17(3), 458–479.Google Scholar

  • Hart, S.R. (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309(5971), 753.Google Scholar

  • Hauri, E.H., Wagner, T.P., and Grove, T.L. (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117(1-4), 149–166.Google Scholar

  • Hermann, J. (2002) Allanite: thorium and light rare earth element carrier in subducted crust. Chemical Geology, 192(3-4), 289–306.Google Scholar

  • Hofmann, A.W., Jochum, K.P., Seufert, M., and White, W.M. (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 79(1), 33–45.Google Scholar

  • Honegger, K., Le Fort, P., Mascle, G., and Zimmermann, J.L. (1989) The blueschists along the Indus Suture Zone in Ladakh, NW Himalaya. Journal of Metamorphic Geology, 7(1), 57–72.Google Scholar

  • Jochum, K.P. et al. (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35(4), 397–429.Google Scholar

  • Karson, J.A. (2002) Geologic structure of the uppermost oceanic crust created at fast-to intermediate-rate spreading centers. Annual Review of Earth and Planetary Sciences, 30(1), 347–384.Google Scholar

  • Kieffer, B., Arndt, N. Lapierre, H., Bastien, F., Bosch, D., Pecher, A., Yirgu, G., Ayalew, D., Weis, D., and Jerram, D.A (2004), Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell. Journal of Petrology, 45(4), 793–834(742).Google Scholar

  • King, R.L., Bebout, G.E., Moriguti, T., and Nakamura, E. (2006) Elemental mixing systematics and Sr–Nd isotope geochemistry of mélnge formation: Obstacles to identification of fluid sources to arc volcanics. Earth and Planetary Science Letters, 246(3), 288–304.Google Scholar

  • Kim, D., Katayama, I., Wallis, S., Michibayashi, K., Miyake, A., Seto, Y., and Azuma, S. (2015) Deformation microstructures of glaucophane and lawsonite in experimentally deformed blueschists: Implications for intermediate-depth intraplate earthquakes. Journal of Geophysical Research: Solid Earth, 120(2), 1229–1242.Google Scholar

  • Kleine, B.I., Skelton, A.D.L., Huet, B., and Pitcairn, I.K. (2014) Preservation of blueschist-facies minerals along a shear zone b coupled metasomatism and fast-flowing CO2-bearing fluids. Journal of Petrology, 55(10), 1905–1939.Google Scholar

  • Klemd, R. (2013) Metasomatism during high-pressure metamorphism: eclogites and blueschist-facies rocks, metasomatism and the chemical transformation of rock. Lecture Notes in Earth System Sciences, pp. 351–413. Springer.Google Scholar

  • Klemme, S., Blundy, J.D., and Wood, B.J. (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 66(17), 3109–3123.Google Scholar

  • Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., and Krivovichev, V.G. (1997) Report. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names. Mineralogical Magazine, 61(2), 295–321.Google Scholar

  • Lugmair, G.W., and Galer, S.J.G. (1992) Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta, 56(4), 1673–1694.Google Scholar

  • Lugmair, G.W., and Marti, K. (1978) Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3), 349–357.Google Scholar

  • Lustrino, M., Duggen, S., and Rosenberg, C.L. (2011) The Central-Western Mediterranean: anomalous igneous activity in an anomalous collisional tectonic setting. Earth-Science Reviews, 104(1), 1–40.Google Scholar

  • Maekawa, H., Shozul, M., Ishii, T., Fryer, P., and Pearce, J.A. (1993) Blueschist Metamorphism in an Active Subduction Zone. Nature, 364, 520–523.Google Scholar

  • Martin, L.A.J., Hermann, J., Gauthiez-Putallaz, L., Whitney, D.L., Vitale Brovarone, A., Fornash, K.F., and Evans, N.J. (2014) Lawsonite geochemistry and stability implication for trace element and water cycles in subduction zones. Journal of Metamorphic Geology, 32(5), 455–478.Google Scholar

  • Martin, L.A.J., Wood, B.J., Turner, S., and Rushmer, T. (2011) Experimental Measurements of Trace Element Partitioning Between Lawsonite, Zoisite and Fluid and their Implication for the Composition of Arc Magmas. Journal of Petrology, 52(6), 1049–1075.Google Scholar

  • Maruyama, S., Liou, J.G., and Terabayashi, M. (1996) Blueschists and eclogites of the world and their exhumation. International Geology Review, 38(6), 485–594.Google Scholar

  • Maulana, A., Christy, A.G., Ellis, D.J., Imai, A., and Watanabe, K. (2013) Geochemistry of eclogite- and blueschist-facies rocks from the Bantimala Complex, South Sulawesi, Indonesia: Protolith origin and tectonic setting. Island Arc, 22(4), 427–452.Google Scholar

  • Miller, C., Schuster, R., Klötzli, U., Frank, W., and Purtscheller, F. (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9), 1399–1424.Google Scholar

  • Miller, D.P., Marschall, H.R., and Schumacher, J.C. (2009) Metasomatic formation and petrology of blueschist-facies hybrid rocks from Syros (Greece): Implications for reactions at the slab–mantle interface. Lithos, 107(1-2), 53–67.Google Scholar

  • Mulcahy, S.R., Vervoort, J.D., and Renne, P.R. (2014) Dating subduction zone metamorphism with combined garnet and lawsonite Lu-Hf geochronology. Journal of Metamorphic Geology, 32(5), 515–533.Google Scholar

  • Okay, A.I. (1978) Sodic pyroxenes from metabasites in the eastern Mediterranean. Contributions to Mineralogy and Petrology, 68(1), 7–11.Google Scholar

  • Okay, A.I. (1980a) Mineralogy, petrology, and phase relations of glaucophane-lawsonite zone blueschists from the Tavşanli Region, Northwest Turkey. Contributions to Mineralogy and Petrology, 72(3), 243–255.Google Scholar

  • Okay, A.I. (1980b) Lawsonite zone blueschists and a sodic amphibole producing reaction in the Tavşanli Region, Northwest Turkey. Contributions to Mineralogy and Petrology, 75(3), 179–186.Google Scholar

  • Okay, A.I. (1982) Incipient blueschist metamorphism and metasomatism in the Tavşanli region, Northwest Turkey. Contributions to Mineralogy and Petrology, 79(4), 361–367.Google Scholar

  • Okay, A.I. (1986) High-pressure/low-temperature metamorphic rocks of Turkey. Geological Society of America Memoirs, 164, 333–347.Google Scholar

  • Okay, A.I. (1989) Alpine-Himalayan Blueschists. Annual Review of Earth and Planetary Sciences, 17(1), 55–87.Google Scholar

  • ——— (2002) Jadeite-chloritoid-glaucophane-lawsonite blueschists in north-west Turkey: unusually high P/T ratios in continental crust. Journal of Metamorphic Geology, 20(8), 757–768.Google Scholar

  • Okay, A.I., and Tüysüz, O. (1999) Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475–515.Google Scholar

  • Okay, A.I., and Whitney, D.L. (2010) Blueschists, eclogites, ophiolites and suture zones in northwest Turkey: A review and a field excursion guide. Ofioliti, 35(2), 131–171.Google Scholar

  • Okay, A.I., Harris, N.B.W., and Kelley, S.P. (1998) Exhumation of blueschists along a Tethyan suture in northwest Turkey. Tectonophysics, 285(3-4), 275–299.Google Scholar

  • Okazaki, K., and Hirth, G. (2016) Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust. Nature, 530, 81–84.Google Scholar

  • Özbey, Z., Ustaömer, T., and Robertson, A.H.F. (2013) Mesozoic magmatic and sedimentary development of the Tavşanlı Zone (NW Turkey): implications for rifting, passive margin development and ocean crust emplacement. Geological Society, London, Special Publications, 372.Google Scholar

  • Pagé, L., Hattori, K., de Hoog, J.C.M., and Okay, A.I. (2016) Halogen (F, Cl, Br, I) behaviour in subducting slabs: A study of lawsonite blueschists in western Turkey. Earth and Planetary Science Letters, 442, 133–142.Google Scholar

  • Palin, R.M., and White, R.W. (2015) Emergence of blueschists on Earth linked to secular changes in oceanic crust composition. Nature Geoscience, 9, 60–64.Google Scholar

  • Parkinson, C.D. (1996) The origin and significance of metamorphosed tectonic blocks in mélanges: evidence from Sulawesi, Indonesia. Terra Nova, 8(4), 312–323.Google Scholar

  • Patočka, F., and Pin, C. (2005) Sm-Nd isotope and trace element evidence for heterogeneous igneous protoliths of Variscan mafic blueschists in the East Krkonoše Complex (West Sudetes, NE Bohemian Massif, Czech Republic). Geodinamica Acta, 18(5), 363–374.Google Scholar

  • Pearce, J.A. (1975) Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics, 25(1), 41–67.Google Scholar

  • ——— (1983) The role of sub-continental lithosphere in magma genesis at destructive plate margins. Continental Basalts & Mantle Xenoliths, 147(6), 2162–2173.Google Scholar

  • Pearce, J.A., and Cann, J.R. (1973) Tectonic Setting of Basic Volcanic Rocks determined using Trace Element Analyses. Earth & Planetary Science Letters, 19(2), 290–300.Google Scholar

  • Peccerillo, A., and Martinotti, G. (2006) The Western Mediterranean lamproitic magmatism: origin and geodynamic significance. Terra Nova, 18(2), 109–117.Google Scholar

  • Plank, T. (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5), 921–944.Google Scholar

  • Plank, T., and Langmuir, C.H. (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4), 325–394.Google Scholar

  • Plunder, A., Agard, P., Chopin, C., and Okay, A.I. (2013) Geodynamics of the Tavşanlı zone, western Turkey: Insights into subduction/obduction processes. Tectonophysics, 608(0), 884–903.Google Scholar

  • Plunder, A., Agard, P., Chopin, C., Pourteau, A., and Okay, A.I. (2015) Accretion, underplating and exhumation along a subduction interface: From subduction initiation to continental subduction (Tavşanlı zone, W. Turkey). Lithos, 226(0), 233–254.Google Scholar

  • Plunder, A., Agard, P., Chopin, C., Soret, M., Okay, A.I., and Whitechurch, H. (2016) Metamorphic sole formation, emplacement and blueschist facies overprint: early subduction dynamics witnessed by western Turkey ophiolites. Terra Nova, 28(5), 329–339.Google Scholar

  • Poli, S., and Schmidt, M.W. (1997) The high-pressure stability of hydrous phases in orogenic belts: an experimental approach on eclogite-forming processes. Tectonophysics, 273(1-2), 169–184.Google Scholar

  • Pourteau, A., Candan, O., and Oberhänsli, R. (2010) High-pressure metasediments in central Turkey: Constraints on the Neotethyan closure history. Tectonics, 29(5), TC5004.Google Scholar

  • Pourteau, A., Sudo, M., Candan, O., Lanari, P., Vidal, O., and Oberhänsli, R. (2013) Neotethys closure history of Anatolia: insights from 40Ar-39Ar geochronology and P-T estimation in high-pressure metasedimentary rocks. Journal of Metamorphic Geology, 31(6), 585–606.Google Scholar

  • Prelević, D., and Foley, S.F. (2007) Accretion of arc-oceanic lithospheric mantle in the Mediterranean: Evidence from extremely high-Mg olivines and Cr‑rich spinel inclusions in lamproites. Earth and Planetary Science Letters, 256(1‑2), 120–135.Google Scholar

  • Prelević, D., Foley, S.F., Romer, R., and Conticelli, S. (2008) Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochimica et Cosmochimica Acta, 72(8), 2125–2156.Google Scholar

  • Prelević, D., Jacob, D.E., and Foley, S.F. (2013) Recycling plus: A new recipe for the formation of Alpine-Himalayan orogenic mantle lithosphere. Earth and Planetary Science Letters, 362, 187–197.Google Scholar

  • Prelević, D., Akal, C., Romer, R.L., Mertz-Kraus, R., and Helvacı, C. (2015) Magmatic response to slab tearing: Constraints from the Afyon Alkaline Volcanic Complex, Western Turkey. Journal of Petrology, 56(3), 527–562.Google Scholar

  • Raymond, L.A. (1984) Classification of melanges. Geological Society of America Special Papers, 198, 7–20.Google Scholar

  • Rollinson, H.R. (2014) Using Geochemical Data: Evaluation, Presentation, Interpretation. Routledge, London.Google Scholar

  • Rojay, B., Altıner, D., Altıner, S.Ö., Pırıl Önen, A., James, S., and Thirlwall, M.F. (2004) Geodynamic significance of the Cretaceous pillow basalts from North Anatolian Ophiolitic Mélange Belt (Central Anatolia, Turkey): geochemical and paleontological constraints. Geodinamica Acta, 17(5), 349–361.Google Scholar

  • Rubatto, D. (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology, 184(1), 123–138.Google Scholar

  • Saunders, A.D., Norry, M.J., and Tarney, J. (1988) Origin of MORB and chemically-depleted mantle reservoirs: Trace element constraints. Journal of Petrology, Special Volume, 1, 415–445.Google Scholar

  • Schmidt, M.W. (1995) Lawsonite: Upper pressure stability and formation of higher density hydrous phases. American Mineralogist, 80(11-12), 1286–1292.Google Scholar

  • Schmidt, M.W., and Poli, S. (1994) The stability of lawsonite and zoisite at high pressures: Experiments in CASH to 92 kbar and implications for the presence of hydrous phases in subducted lithosphere. Earth and Planetary Science Letters, 124(1-4), 105–118.Google Scholar

  • Schumacher, J.C. (1997) Appendix 2: the estimation of ferric iron in electron microprobe analysis of amphiboles. Mineralogical Magazine, 61(405), 312–321.Google Scholar

  • Seaton, N.C.A., Whitney, D.L., Teyssier, C., Toraman, E., and Heizler, M.T. (2009) Recrystallization of high-pressure marble (Sivrihisar, Turkey). Tectonophysics, 479, 241–253.Google Scholar

  • Searle, M., Waters, D.J., Martin, H.N., and Rex, D.C. (1994) Structure and metamorphism of blueschist-eclogite facies rocks from the northeastern Oman Mountains. Journal of the Geological Society, 151, 555–576.Google Scholar

  • Şengör, A.M., and Yilmaz, Y. (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3), 181–241.Google Scholar

  • Sherlock, S., Kelley, S., Inger, S., Harris, N., and Okay, A. (1999) 40Ar-39Ar and Rb-Sr geochronology of high-pressure metamorphism and exhumation history of the Tavşanlı Zone, NW Turkey. Contributions to Mineralogy and Petrology, 137(1-2), 46–58.Google Scholar

  • Shervais, J.W. (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1), 101–118.Google Scholar

  • Song, S., Niu, Y., Zhang, L., Wei, C., Liou, J.G., and Su, L. (2009) Tectonic evolution of early Paleozoic HP metamorphic rocks in the North Qilian Mountains, NW China: New perspectives. Journal of Asian Earth Sciences, 35(3), 334–353.Google Scholar

  • Sorensen, S.S., Grossman, J.N., and Perfit, M.R. (1997) Phengite-hosted LILE enrichment in eclogite and related rocks: Implications for fluid-mediated mass transfer in subduction zones and arc magma genesis. Journal of Petrology, 38(1), 3–34.Google Scholar

  • Spandler, C., Hermann, J., Arculus, R., and Mavrogenes, J. (2003) Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contributions to Mineralogy and Petrology, 146(2), 205–222.Google Scholar

  • Steiger, R.H., and Jäger, E. (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3), 359–362.Google Scholar

  • Stern, R.J. (2005) Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33(7), 557–560.Google Scholar

  • Stracke, A., Bizimis, M., and Salters, V.J.M. (2003) Recycling oceanic crust: Quantitative constraints. Geochemistry, Geophysics, Geosystems, 4(3), 8003.Google Scholar

  • Sun, S.S., and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345.Google Scholar

  • Tang, X.-C., and Zhang, K.-J. (2013) Lawsonite- and glaucophane-bearing blueschists from NW Qiangtang, northern Tibet, China: mineralogy, geochemistry, geochronology, and tectonic implications. International Geology Review, 56(2), 150–166.Google Scholar

  • Tankut, A., Dilek, Y., and Önen, P. (1998) Petrology and geochemistry of the Neo-Tethyan volcanism as revealed in the Ankara melange, Turkey. Journal of Volcanology and Geothermal Research, 85(1), 265–284.Google Scholar

  • Thirlwall, M.F., Upton, B.G.J., and Jenkins, C. (1994), Interaction between continental lithosphere and the Iceland plume—Sr-Nd-Pb isotope geochemistry of Tertiary basalts. NE Greenland, Journal of Petrology, 35(3), 839–879.Google Scholar

  • Tommasini, S., Avanzinelli, R., and Conticelli, S. (2011) The Th/La and Sm/La conundrum of the Tethyan realm lamproites. Earth and Planetary Science Letters, 301(3-4), 469–478.Google Scholar

  • Topuz, G., Okay, A.I., Altherr, R., Satir, M., and Schwarz, W.H. (2008) Late Cretaceous blueschist facies metamorphism in southern Thrace (Turkey) and its geodynamic implications. Journal of Metamorphic Geology, 26(9), 895–913.Google Scholar

  • Tribuzio, R., and Giacomini, F. (2002) Blueschist facies metamorphism of peralkaline rhyolites from the Tenda crystalline massif (northern Corsica): evidence for involvement in the Alpine subduction event? Journal of Metamorphic Geology, 20(5), 513–526.Google Scholar

  • Tribuzio, R., Messiga, B., Vannucci, R., and Bottazzi, P. (1996) Rare earth element redistribution during high-pressure-low-temperature metamorphism in ophiolitic Fe-gabbros (Liguria, northwestern Italy): Implications for light REE mobility in subduction zones. Geology, 24(8), 711.Google Scholar

  • Tsujimori, T., and Ernst, W.G. (2014) Lawsonite blueschists and lawsonite eclogites as proxies for palaeo-subduction zone processes: a review. Journal of Metamorphic Geology, 32(5), 437–454.Google Scholar

  • Tsujimori, T., Sisson, V., Liou, J., Harlow, G., and Sorensen, S. (2006) Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites. Lithos, 92(3-4), 609–624.Google Scholar

  • Turner, S., Hawkesworth, C., van Calsteren, P., Heath, E., Macdonald, R., and Black, S. (1996) U-series isotopes and destructive plate margin magma genesis in the Lesser Antilles. Earth and Planetary Science Letters, 142(1), 191–207.Google Scholar

  • Ueno, T. (1999) REE-bearing sector-zoned lawsonite in the Sanbagawa pelitic schists of the eastern Kii Peninsula, central Japan. European Journal of Mineralogy, 11(6), 993–998.Google Scholar

  • Ukar, E. (2012) Tectonic significance of low-temperature blueschist blocks in the Franciscan mélange at San Simeon, California. Tectonophysics, 568–569(0), 154–169.Google Scholar

  • Ukar, E., and Cloos, M. (2015) Magmatic origin of low-T mafic blueschist and greenstone blocks from the Franciscan mélange, San Simeon, California. Lithos, 230, 17–29.Google Scholar

  • Usui, T., Kobayashi, K., Nakamura, E., and Helmstaedt, H. (2007) Trace element fractionation in deep subduction zones inferred from a lawsonite-eclogite xenolith from the Colorado Plateau. Chemical Geology, 239(3-4), 336–351.Google Scholar

  • Van Hinsbergen, D.J.J. (2010) A key extensional metamorphic complex reviewed and restored: the Menderes Massif of western Turkey. Earth-Science Reviews, 102(1-2), 60–76.Google Scholar

  • Van Westrenen, W., Blundy, J.D., and Wood, B.J. (2001) High field strength element/rare earth element fractionation during partial melting in the presence of garnet: Implications for identification of mantle heterogeneities. Geochemistry, Geophysics, Geosystems, 2(7), 223–235.Google Scholar

  • Vitale Brovarone, A., Alard, O., Beyssac, O., Martin, L., and Picatto, M. (2014) Lawsonite metasomatism and trace element recycling in subduction zones. Journal of Metamorphic Geology, 489–514.Google Scholar

  • Volkova, N.I., and Budanov, V.I. (1999) Geochemical discrimination of metabasalt rocks of the Fan–Karategin transitional blueschist/greenschist belt, South Tianshan, Tajikistan: seamount volcanism and accretionary tectonics. Lithos, 47(3-4), 201–216.Google Scholar

  • Volkova, N.I., Stupakov, S.I., Babin, G.A., Rudnev, S.N., and Mongush, A.A. (2009) Mobility of trace elements during subduction metamorphism as exemplified by the blueschists of the Kurtushibinsky Range, Western Sayan. Geochemistry International, 47(4), 380–392.Google Scholar

  • Wang, Y., Prelević, D., Buhre, S., and Foley, S.F. (2017) Constraints on the sources of post-collisional K-rich magmatism: The roles of continental clastic sediments and terrigenous blueschists. Chemical Geology, 455, 192–207.Google Scholar

  • Wehrmeister, U., Jacob, D.E., Soldati, A.L., Loges, N., Häger, T., and Hofmeister, W. (2011) Amorphous, nanocrystalline and crystalline calcium carbonates in biological materials. Journal of Raman Spectroscopy, 42(5), 926–935.Google Scholar

  • Whitney, D.L., Teyssier, C., Seaton, N.C.A., and Fornash, K.F. (2014) Petrofabrics of high-pressure rocks exhumed at the slab-mantle interface from the “point of no return” in a subduction zone (Sivrihisar, Turkey). Tectonics, 33, 2315–2341.Google Scholar

  • Winchester, J.A., and Floyd, P.A. (1976) Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters, 28(3), 459–469.Google Scholar

  • Wood, D.A. (1980) The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth & Planetary Science Letters, 50(1), 11–30.Google Scholar

  • Xia, Q.-X., and Zhou, L.-G. (2017) Different origins of garnet in high pressure to ultrahigh pressure metamorphic rocks. Journal of Asian Earth Sciences, 145, 130–148.Google Scholar

  • Xiao, Y., Niu, Y., Li, H., Wang, H., Liu, X., and Davidson, J. (2014) Trace element budgets and (re-)distribution during subduction-zone ultrahigh pressure metamorphism: Evidence from Western Tianshan, China. Chemical Geology, 365, 54–68.Google Scholar

  • Yaxley, G.M., and Green, D.H. (1998) Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische und Petrographische Mitteilungen, 78, 243–255.Google Scholar

  • Zhang, L., Wang, Q., and Song, S. (2009) Lawsonite blueschist in Northern Qilian, NW China: P–T pseudosections and petrologic implications. Journal of Asian Earth Sciences, 35(3-4), 354–366.Google Scholar

  • Zheng, B., Zhu, W., Jahn, B.M., Shu, L., Zhang, Z., and Su, J. (2010) Subducted Precambrian oceanic crust: Geochemical and Sr Nd isotopic evidence from metabasalts of the Aksu blueschist, NW China. Journal of the Geological Society, 167(6), 1161–1170.Google Scholar

  • Zhu, C.Y., Zhao, G., Sun, M., Liu, Q., Han, Y., Hou, W., Zhang, X., and Eizenhofer, P.R. (2015) Geochronology and geochemistry of the Yilan blueschists in the Heilongjiang Complex, northeastern China and tectonic implications. Lithos, 216-217, 241–253.Google Scholar

About the article

Orcid 0000-0001-6560-0654


Received: 2018-09-17

Accepted: 2019-01-15

Published Online: 2019-04-26

Published in Print: 2019-05-27


FundingThis work was supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB18000000), National Natural Science Foundation of China (Grant No. 41773055) and the ARC Centre of Excellence for Core to Crust Fluid Systems/GEMOC. This is contribution 1305 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au) and 1296 in the GEMOC Key Centre (http://www.gemoc.mq.edu.au). The Macquarie University HDR Fund supported experimental and analytical work. Fieldwork in Turkey was funded by the Deutsche Forschungsgemeinschaft.


Citation Information: American Mineralogist, Volume 104, Issue 5, Pages 724–743, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6818.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in