Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 104, Issue 5


The effect of oxidation on the mineralogy and magnetic properties of olivine

Joseph Knafelc
  • Department of Geology, Southern Illinois University, 1259 Lincoln Drive, Carbondale, Illinois 62901, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Justin Filiberto
  • Department of Geology, Southern Illinois University, 1259 Lincoln Drive, Carbondale, Illinois 62901, U.S.A.
  • Lunar and Planetary Institute, USRA, 3600 Bay Area Boulevard, Houston, Texas 77058, U.S.A.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eric C. Ferré
  • Department of Geology, Southern Illinois University, 1259 Lincoln Drive, Carbondale, Illinois 62901, U.S.A.
  • School of Geosciences, University of Louisiana at Lafayette, Hamilton Hall, Room 323, 611 McKinley Street, Lafayette, Louisiana 70501, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ James A. Conder
  • Department of Geology, Southern Illinois University, 1259 Lincoln Drive, Carbondale, Illinois 62901, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lacey Costello
  • Department of Geology, Southern Illinois University, 1259 Lincoln Drive, Carbondale, Illinois 62901, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jake R. Crandall
  • Department of Geology, Southern Illinois University, 1259 Lincoln Drive, Carbondale, Illinois 62901, U.S.A.
  • Department of Geology and Geography, Eastern Illinois University, Physical Science Building, 600 Lincoln Avenue, Charleston, Illinois 61920, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Darby Dyar
  • Department of Astronomy, Mount Holyoke College, 50 College Street, South Hadley, Massachusetts 01075, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sarah A. Friedman
  • Department of Geology, Southern Illinois University, 1259 Lincoln Drive, Carbondale, Illinois 62901, U.S.A.
  • Department of Biological & Physical Sciences, Montana State University Billings, 1500 University Drive, Billings, Montana 59101, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel R. Hummer
  • Department of Geology, Southern Illinois University, 1259 Lincoln Drive, Carbondale, Illinois 62901, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Susanne P. Schwenzer
  • School of Environment, Earth, and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, U.K.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-26 | DOI: https://doi.org/10.2138/am-2019-6829


Although nucleation of magnetite and/or hematite along dislocations upon oxidation of olivine has been observed by many workers, the effect of oxidation on the magnetic properties of the sample with specific mineralogical alterations has not been studied. Therefore, we investigate this problem using a set of time series 1 bar oxidation experiments at 600 and 900 °C. Results show rapid olivine oxidation and alteration at both 600 and 900 °C, forming magnetite and hematite associated with a change from paramagnetic to ferromagnetic behavior after oxidation. Magnetite and hematite nucleate along dislocations and impurities in the crystal structure, along with surface coatings and within cracks in the crystals.

Fresh, unaltered mantle xenoliths containing magnetite have been interpreted as having formed in cold tectonic regimes in the mantle, rather than through oxidation during or after ascent. Mantle xenoliths rapidly ascend through the mantle with estimates of the ascent of up to 90 km/h (3 GPa/h) based on the diffusion profile of water in mantle olivine. The rates correspond to xenoliths ascending through the mantle over hours and not days or weeks. Our results show that olivine oxidation and alteration can occur in days to weeks at 600 °C and within minutes at 900 °C. Therefore, if the xenolithic material is transported to the surface in a cold magma (at temperatures ≤600 °C), then the timescale of ascent is likely not long enough for oxidation to cause magnetite formation or a ferromagnetic signature to occur. However, if the material is transported in a hot oxidized basaltic magma (with temperatures ≥900 °C), then oxidation can cause magnetite formation and a ferromagnetic signature.

Keywords: Olivine; oxidation; hematite; magnetite; magnetic properties; xenoliths

References cited

  • Banfield, J.F., Veblen, D.R., and Jones, B.F. (1990) Transmission electron microscopy of subsolidus oxidation and weathering of olivine. Contributions to Mineralogy and Petrology, 106(1), 110–123.Google Scholar

  • Bowen, N.L. (1928) The Evolution of Igneous Rocks. Princeton University Press, New Jersey.Google Scholar

  • Callahan, C. (2009) Magnetic properties of unaltered and metasomatized mantle xenoliths from the Rio Puerco volcanic necks, NM. University of New Mexico, Albuquerque.Google Scholar

  • Canil, D., O’Neill, H. St.C., Pearson, D., Rudnick, R., McDonough, W., and Carswell, D. (1994) Ferric iron in peridotites and mantle oxidation states. Earth and Planetary Science Letters, 123(1-3), 205–220.Google Scholar

  • Creighton, S., Stachel, T., Matveev, S., Höfer, H., McCammon, C., and Luth, R.W. (2009) Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contributions to Mineralogy and Petrology, 157(4), 491.Google Scholar

  • Dasgupta, R., and Hirschmann, M.M. (2010) The deep carbon cycle and melting in Earth’s interior. Earth and Planetary Science Letters, 298(1-2), 1–13.Google Scholar

  • Dasgupta, R., Mallik, A., Tsuno, K., Withers, A.C., Hirth, G., and Hirschmann, M.M. (2013) Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature, 493, 211–215 doi: 10.1038/nature11731.Google Scholar

  • De Boer, C.B. (1999) Rock-magnetic studies on hematite, maghemite and combustion-metamorphic rocks. Utrecht University,Google Scholar

  • De Faria, D., Venâncio Silva, S., and De Oliveira, M. (1997) Raman microspectros-copy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, 28(11), 873–878.Google Scholar

  • Demouchy, S., Jacobsen, S.D., Gaillard, F., and Stern, C.R. (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology, 34(6), 429–432.Google Scholar

  • Dunlop, D.J. (2002) Theory and application of the Day plot Mrs/Ms versus Hcr/Hc 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research: Solid Earth, 107(B3), EPM 4-1–EPM 4-22. CrossrefGoogle Scholar

  • Dyar, M.D., McGuire, A.V., and Harrell, M.D. (1992) Crystal chemistry of iron in two styles of metasomatism in the upper mantle. Geochimica et Cosmochimica Acta, 56(6), 2579–2586. http://dx.doi.org/10.1016/0016-7037(92)90212-2

  • Eggleton, R.A., Foudoulis, C., and Varkevisser, D. (1987) Weathering of basalt: changes in rock chemistry and mineralogy. Clays and Clay Minerals, 35(3), 161–169.Google Scholar

  • Fegley, B., Klingelhöfer, G., Brackett, R., Izenberg, N., Kremser, D., and Lodders, K. (1995) Basalt oxidation and the formation of hematite on the surface of Venus. Icarus, 118(2), 373–383.Google Scholar

  • Ferré, E.C., Friedman, S.A., Martín-Hernández, F., Feinberg, J.M., Conder, J.A., and Ionov, D.A. (2013) The magnetism of mantle xenoliths and potential implications for sub-Moho magnetic sources. Geophysical Research Letters, 40(1), 105–110. CrossrefGoogle Scholar

  • Ferré, E.C., Friedman, S.A., Martín-Hernández, F., Feinberg, J.M., Till, J.L., Ionov, D.A., and Conder, J.A. (2014) Eight good reasons why the uppermost mantle could be magnetic. Tectonophysics, 624–625, 3–14. http://dx.doi.org/10.1016/j.tecto.2014.01.004

  • Friedman, S.A., Feinberg, J.M., Ferré, E.C., Demory, F., Martín-Hernández, F., Conder, J.A., and Rochette, P. (2014) Craton vs. rift uppermost mantle contributions to magnetic anomalies in the United States interior. Tectonophysics, 624–625, 15–23. http://dx.doi.org/10.1016/j.tecto.2014.04.023

  • Gaetani, G.A., and Grove, T.L. (2003) Experimental constraints on melt generation in the mantle wedge. In J. Eiler, Ed., Inside the Subduction Factory, 138, 107–134. Geophysical Monograph Series.Google Scholar

  • Goldich, S.S. (1938) A study in rock-weathering. The Journal of Geology, 46, 17–58. doi: 10.1086/624619.Google Scholar

  • Goode, A.D.T. (1974) Oxidation of natural olivines. Nature, 248, 500. CrossrefGoogle Scholar

  • Haggerty, S.E., and Sautter, V. (1990) Ultradeep (greater than 300 kilometers), ultramafic upper mantle xenoliths. Science, 248, 993–996. doi: 10.1126/science.248.4958.993.Google Scholar

  • Hanesch, M. (2009) Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International, 177(3), 941–948.Google Scholar

  • Hausrath, E.M., Navarre-Sitchler, A.K., Sak, P.B., Steefel, C.I., and Brantley, S.L. (2008) Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars. Geology 36, 67–70. CrossrefGoogle Scholar

  • Hemant, K., and Maus, S. (2005) Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique. Journal of Geophysical Research: Solid Earth, 110(B12). CrossrefGoogle Scholar

  • Idoko, C.M. (2017) Forward modelling of long-wavelength magnetic anomalies from the upper mantle. M.S. thesis, Southern Illinois University.Google Scholar

  • Idoko, C.M., Conder, J.A., Ferré, E.C., and Filiberto, J. (2019) The potential contribution to long wavelength anomalies from the lithospheric mantle. Physics of the Earth and Planetary Interiors, in press.Google Scholar

  • Ishimaru, S., Arai, S., and Shukuno, H. (2009) Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha volcano, Kamchatka. Earth and Planetary Science Letters, 284(3), 352–360.Google Scholar

  • Kelley, K.A., and Cottrell, E. (2009) Water and the oxidation state of subduction zone magmas. Science, 325, 605–607.Google Scholar

  • Khisina, N.R., Khramov, D.A., Kleschev, A.A., and Langer, K. (1998) Laihunitization as a mechanism of olivine oxidation. European Journal of Mineralogy, 10, 229–238.Google Scholar

  • Kiseeva, E.S., Vasiukov, D.M., Wood, B.J., McCammon, C., Stachel, T., Bykov, M., Bykova, E., Chumakov, A., Cerantola, V., Harris, J.W., and Dubrovinsk, L. (2018) Oxidized iron in garnets from the mantle transition zone. Nature Geosciences, 40,055–41,567. CrossrefGoogle Scholar

  • Kohlstedt, D.L., Goetze, C., Durham, W.B., and Sande, J.V. (1976) New technique for decorating dislocations in olivine. Science, 191, 1045–1046. doi: 10.1126/science.191.4231.1045.Google Scholar

  • Lafuente, B., Downs, R.T., Yang, H., and Stone, N. (2016) The power of databases: The RRUFF project. In Armbruster, and R.M. Danisi, Eds., Highlights in Mineralogical Crystallography, pp. 1–29. De Gruyter. https://doi.org/10.1515/9783110417104-003

  • Luguet, A., and Lorand, J-P. (1998) Supergene weathering and sulphur contents of basalt-hosted mantle xenoliths: an appraisal from Montferrier Iherzolites (Languedoc, France). Comptes Rendus de l’Academie des Sciences Series IIA Earth and Planetary Science, 8, 519–525.Google Scholar

  • Masterton, S.M., Gubbins, D., Müller, R.D., and Singh, K.H. (2013) Forward modelling of oceanic lithospheric magnetization. Geophysical Journal International, 192(3), 951–962. doi: 10.1093/gji/ggs063.Google Scholar

  • Maxbauer, D.P., Feinberg, J.M., and Fox, D.L. (2016) MAX UnMix: A web application for unmixing magnetic coercivity distributions. Computers & Geosciences, 95, 140–145.Google Scholar

  • McCammon, C. (2005) The paradox of mantle redox. Science, 308, 807–808.Google Scholar

  • McGuire, A.V., Dyar, M.D., and Nielson, J.E. (1991) Metasomatic oxidation of upper mantle periodotite. Contributions to Mineralogy and Petrology, 109(2), 252–264.Google Scholar

  • Mullen, E.K., and McCallum, I.S. (2013) Coexisting pseudobrookite, ilmenite, and titanomagnetite in hornblende andesite of the Coleman Pinnacle flow, Mount Baker, Washington: Evidence for a highly oxidized arc magma. American Mineralogist, 98, 417–425.Google Scholar

  • Nitsan, U. (1974) Stability field of olivine with respect to oxidation and reduction. Journal of Geophysical Research, 79(5), 706–711.Google Scholar

  • Nixon, P.H. (1987) Mantle Xenoliths. Wiley.Google Scholar

  • Oze, C., and Sharma, M. (2005) Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars. Geophysical Research Letters, 32, L10203. doi: 10.1029/2005gl022691.Google Scholar

  • Parkinson, I.J., and Arculus, R.J. (1999) The redox state of subduction zones: insights from arc-peridotites. Chemical Geology, 160(4), 409–423.Google Scholar

  • Peslier, A.H., Bizimis, M., and Matney, M. (2015) Water disequilibrium in olivines from Hawaiian peridotites: Recent metasomatism, H diffusion and magma ascent rates. Geochimica et Cosmochimica Acta, 154(Supplement C), 98–117. https://doi.org/10.1016/j.gca.2015.01.030

  • Rutherford, M.J., and Hill, P.M. (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. Journal of Geophysical Research: Solid Earth, 98(B11), 19,667–19,685.Google Scholar

  • Stern, R.J. (2002) Subduction zones. Reviews of Geophysics, 40(4), 3-1–3-38. doi: 10.1029/2001RG000108.Google Scholar

  • Swaddle, T.W., and Oltmann, P. (1980) Kinetics of the magnetite–maghemite– hematite transformation, with special reference to hydrothermal systems. Canadian Journal of Chemistry, 58(17), 1763–1772. doi: 10.1139/v80-279.Google Scholar

  • Syverson, D.D., Tutolo, B.M., Borrok, D.M., and Seyfried, W.E. (2017) Serpentinization of olivine at 300°C and 500bars: An experimental study examining the role of silica on the reaction path and oxidation state of iron. Chemical Geology, 475 (Supplement C), 122–134. https://doi.org/10.1016/j.chemgeo.2017.11.006

  • Tauxe, L. (1998) Paleomagnetic Principles and Practice. Kluwer.Google Scholar

  • Thébault, E., Purucker, M., Whaler, K.A., Langlais, B., and Sabaka, T.J. (2010) The magnetic field of the Earth’s lithosphere. Space Science Reviews, 155(1), 95–127. doi: 10.1007/s11214-010-9667-6.Google Scholar

  • Warner, R.D., and Wasilewski, P.J. (1995) Magnetic petrology of lower crust and upper mantle xenoliths from McMurdo Sound, Antarctica. Tectonophysics, 249(1), 69–92.Google Scholar

  • Wasilewski, P., and Mayhew, M. (1992) The Moho as a magnetic boundary revisited. Geophysical Research Letters, 19(22), 2259–2262.Google Scholar

  • Wasilewski, P.J., Thomas, H.H., and Mayhew, M.A. (1979) The Moho as a magnetic boundary. Geophysical Research Letters, 6(7), 541–544. doi: 10.1029/GL006i007p00541.Google Scholar

About the article

Received: 2018-09-27

Accepted: 2019-01-09

Published Online: 2019-04-26

Published in Print: 2019-05-27

Citation Information: American Mineralogist, Volume 104, Issue 5, Pages 694–702, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6829.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in