Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 104, Issue 5

Issues

Zeolite-group minerals in phonolite-hosted deposits of the Kaiserstuhl Volcanic Complex, Germany

Simon Spürgin / Tobias Björn Weisenberger / Marija Marković
  • Institute for Technology of Nuclear and Other Mineral Raw Materials (ITNMS), Franshe d’ Epere 86, 11000 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-26 | DOI: https://doi.org/10.2138/am-2019-6831

Abstract

Subvolcanic phonolite intrusions of the Kaiserstuhl Volcanic Complex (Germany) show variable degrees of alteration. Their secondary mineralogy has been characterized by petrographic textural observations, bulk-rock powder X‑ray diffraction, thermogravimetry, differential thermal analysis, and electron probe microanalysis. The alteration assemblage is dominated by various zeolites that occur in fissures, vugs, and as replacement products of primary phases within the phonolite matrix. Phonolites in the eastern Kaiserstuhl were emplaced into a sedimentary sequence and are characterized by high zeolite contents (Endhalden: 48 wt%, Fohberg: 45 wt%) with the temporal sequence: ± thomsonite-Ca ± mesolite – gonnardite – natrolite – analcime. In the western Kaiserstuhl zeolite contents are lower (Kirchberg: 26 wt% or less) and the crystallization sequence is: ± thomsonite-Ca – gonnardite – natrolite – chabazite-Ca. Pseudomorphic replacement textures and barite inclusions in secondary aggregates suggest that zeolites grew at the expense of a sulfate-bearing sodalite-group mineral, i.e., haüyne. Fresh grains of sodalite-haüyne are only found at Kirchberg, whereas the pervasive alteration at Fohberg and Endhalden transformed feldspathoid minerals completely to zeolites.

Zeolites formed in a continuously cooling hydrothermal regime after emplacement and solidification of phonolitic magmas. The common paragenetic sequence corresponds to a decrease in the Ca/Na ratio, as well as an increase in the Si/Al ratio with time. The shift from Ca-Na- to pure Na-zeolites is an expression of closed-system behavior in a water-rich environment at Fohberg and Endhalden, which both intruded an Oligocene pre-volcanic sedimentary unit. The late crystallization of K-bearing chabazite-Ca points to a progressively more open hydrothermal system in the Kirchberg phonolite, which was emplaced in a subaerial volcanic succession and was influenced by K-enriched fluid from leucite-bearing country rock. Therefore, the geological setting and nature of emplacement are important factors that control the degree of zeolitization of intrusive feldspathoid minerals-bearing rocks and whether a zeolite occurrence can be used as mineral deposit.

Keywords: Natrolite; gonnardite; analcime; zeolite; alkaline rocks; phonolite; Kaiserstuhl; Microporous materials; Crystal-chemistry; properties; and utilizations

References cited

  • Al Dwairi, R.A., Ibrahim, K.M., and Khoury, H.N. (2014) Potential use of faujasite-phillipsite and phillipsite-chabazite tuff in purification of treated effluent from domestic wastewater treatment plants. Environmental Earth Sciences, 71, 5071–5078.Google Scholar

  • Albrecht, A. (1981) Mineralogische Untersuchungen des Phonoliths vom Fohberg, Kaiserstuhl, mit besonderer Berücksichtigung der mafischen und akzessorischen Minerale. Diploma thesis, 146 p. Albert-Ludwigs-Universtity Freiburg.Google Scholar

  • Andrew, R.M. (2018) Global CO2 emissions from cement production. Earth System Science Data, 10, 195–217.Google Scholar

  • Atanasova, P., Marks, M.A.W., Heinig, T., Krause, J., Gutzmer, J., and Markl, G. (2017) Distinguishing magmatic and metamorphic processes in peralkaline rocks of the Norra Kärr Complex (southern Sweden) using textural and compositional variations of clinopyroxene and eudialyte-group minerals. Journal of Petrology, 58, 361–384.Google Scholar

  • Baerlocher, C., McCusker, L.B., and Olson, D.H. (2007) Atlas of Zeolite Framework Types, 398 p. Elsevier.Google Scholar

  • Baranyi, I., Lippolt, H.J., and Todt, W. (1976) Kalium-Argon-Altersbestimmungen an tertiären Vulkaniten des Oberrheingraben-Gebiets II. Die Alterstraverse vom Hegau nach Lothringen. Oberrheinische Geologische Abhandlungen, 25, 41–62.Google Scholar

  • Barth-Wirsching, U., and Höller, H. (1989) Experimental studies on zeolite formation conditions. European Journal of Mineralogy, 1, 489–506.Google Scholar

  • Bernhard, F., and Barth-Wirsching, U. (2002) Zeolitization of a phonolitic ash flow by groundwater in the Laacher See volcanic area, Eifel, Germany. Clays and Clay Minerals, 50, 710–725.Google Scholar

  • Braunger, S., Marks, M.A.W., Walter, B.F., Neubauer, R., Reich, R., Wenzel, T., Parsapoor, A., and Markl, G. (2018) The petrology of the Kaiserstuhl Volcanic Complex, SW Germany: the importance of metasomatized and oxidized lithospheric mantle for carbonatite generation. Journal of Petrology, 59, 1731–1762.Google Scholar

  • Cappelletti, P., Petrosino, P., de Gennaro, M., Colella, A., Graziano, S.F., D’Amore, M., Mercurio, M., Cerri, G., de Gennaro, R., Rapisardo, G., and Langella, A. (2015) The “Tufo Giallo della Via Tiberina” (Sabatini Volcanic District, Central Italy): a complex system of lithification in a pyroclastic current deposit. Mineralogy and Petrology, 109, 85–101.Google Scholar

  • Chakrabarty, A., Mitchell, R., Ren, M., Saha, P., Pal, S., Pruseth, K., and Sen, A. (2016) Magmatic, hydrothermal and subsolidus evolution of the agpaitic nepheline syenites of the Sushina Hill Complex, India: implications for the metamorphism of peralkaline syenites. Mineralogical Magazine, 80, 1161–1193.Google Scholar

  • Cheary, R.W., and Coelho, A. (1992) A fundamental parameters approach to X‑ray line-profile fitting. Journal of Applied Crystallography, 25, 109–121.Google Scholar

  • Çiftçi, E., Hogan, J.P., Kolayli, H., and Çadirli, E. (2008) Natrolitite, an unusual rock— occurrence and petrographic and geochemical characteristics (eastern Turkey). Clays and Clay Minerals, 56, 207–221.Google Scholar

  • Cochemé, J.J., Lassauvagerie, A.C., Gonzalez-Sandoval, J., Perez-Segura, E., and Münch, P. (1996) Characterisation and potential economic interest of authigenic zeolites in continental sediments from NW Mexico. Mineralium Deposita, 31, 482–491.Google Scholar

  • Coombs, D.S., Alberti, A., Artioli, A., Armbruster, T., Colella, C., Galli, E., Grice, J.D., Liebau, F., Mandarino, J.A., Minato, H., and others. (1997) Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the international mineralogical association, commission on new minerals and mineral names. Canadian Mineralogist, 35, 1571–1606.Google Scholar

  • Czygan, W. (1973) Götzenit, ein komplexes Ti-Zr-Silikat aus dem Kaiserstuhl. Berichte der naturforschenden Gesellschaft zu Freiburg i.Br., 63, 5–12.Google Scholar

  • Czygan, W. (1977) Petrographie und Geochemie der Foidsyenit-Einschlüsse im Phonolith von Niederrotweil im Kaiserstuhl. Berichte der naturforschenden Gesellschaft zu Freiburg i.Br., 67, 41–52.Google Scholar

  • Deer, W.A., Howie, R.A., Wise. W.S., and Zussman, J. (2004) Framework silicates:silica minerals, feldspathoids and the zeolites. The Geological Society of London, London.Google Scholar

  • de’Gennaro, M., and Langella, A. (1996) Italian zeolitized rocks of technological interest. Mineralium Deposita, 31, 452–472.Google Scholar

  • de’Gennaro, M., Cappelletti, P., Langella, A., Perrotta, A., and Scarpati, C. (2000) Genesis of zeolites in the Neapolitan Yellow Tuff: geological, volcanological and mineralogical evidence. Contributions to Mineralogy and Petrology, 139, 17–35.Google Scholar

  • Eggleton, R.A., and Keller, J. (1982) The palagonitization of limburgitic glass—a TEM study. Neues Jahrbuch für Mineralogie, Monatsheft, 321–336.Google Scholar

  • Faccini, B., Di Giuseppe, D., Malferrari, D., Coltorti, M., Abbondanzi, F., Campisi, T., Laurora, A., and Passaglia, E. (2015) Ammonium-exchanged zeolitite preparation for agricultural uses: from laboratory tests to large-scale application in ZeoLIFE project prototype. Periodico di Mineralogia, 84, 303–321.Google Scholar

  • Harada, K., and Nagashima, K. (1972) New data on the analcime-wairakite series. American Mineralogist, 57, 924–931.Google Scholar

  • Hay, R.L., and Sheppard, R.A. (2001) Occurrence of zeolites in sedimentary rocks: An Overview. Reviews in Mineralogy and Geochemistry, 45, 217–234.Google Scholar

  • Helgeson, H.C., Delany, J.M., Nesbitt, H.W., and Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. American Journal of Science, 278-A, 1–229.Google Scholar

  • Ibrahim, K.M. (2004) Mineralogy and chemistry of natrolite from Jordan. Clay Minerals, 39, 47–55.Google Scholar

  • Ibrahim, K.M., and Hall, A. (1996) The authigenic zeolites of the Aritayn volcanoclastic formation, north-east Jordan. Mineralium Deposita, 31, 514–522.Google Scholar

  • Ibrahim, K.M., Khoury, H.N., and Tuffaha, R. (2016) Mo and Ni removal from drinking water using zeolitic tuff from Jordan. Minerals, 6, 1–13.Google Scholar

  • Izzo, F., Grifa, C., Germinario, C., Mercurio, M., De Bonis, A., Tomay, L., and Langella, A. (2018) Production technology of mortar-based building materials from the Arch of Trajan and the Roman Theatre in Benevento, Italy. The European Physical Journal Plus, 133, 363.Google Scholar

  • Jackson, M.D., Mulcahy, S.R., Chen, H., Li, Y., Li, Q., Cappelletti, P., and Wenk, H.R. (2017) Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. American Mineralogist, 102, 1435–1450.Google Scholar

  • Johnson, J.W., Oelkers, E.H., and Helgeson, H.C. (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Computers and Geosciences, 18, 899–947.Google Scholar

  • Kalló, D. (2001) Applications of natural zeolites in water and wastewater treatment. Reviews in Mineralogy and Geochemistry, 45, 519–550.Google Scholar

  • Kassautzki, M. (1983) Phonolith als puzzolanischer Zumahlstoff in der Zementindustrie. Zement-Kalk-Gips International, 36, 688–692.Google Scholar

  • Keller, J. (1964) Zur Vulkanologie des Burkheim-Sponeck Gebietes im westlichen Kaiserstuhl. Berichte der naturforschenden Gesellschaft zu Freiburg i. Br., 54, 107–130.Google Scholar

  • Keller, J. (2001) Kaiserstuhl alkaline rock-carbonatitic complex—Excursion notes. ESF Carbonatite Workshop, Breisach.Google Scholar

  • Keller, J., Sigmund, J., and Müller-Sigmund, H. (1997) Mantle xenoliths in Rhinegraben volcanics from the Black Forest-Vosges Dome. Terra Nova, 9, Supplement, 1, 56.Google Scholar

  • Kónya, P., and Szakáll, S. (2011) Occurrence, composition and paragenesis of the zeolites and associated minerals in the alkaline basalt of a maar-type volcano at Haláp Hill, Balaton Highland, Hungary. Mineralogical Magazine, 75, 2869–2885.Google Scholar

  • Kousehlar, M., Weisenberger, T.B., Tutti, F., and Mirnejad, H. (2012) Fluid control on low-temperature mineral formation in volcanic rocks of Kahrizak, Iran. Geofluids, 12, 295–311.Google Scholar

  • Kraml, M., Pik, R., Rahn, M., Selbekk, R.S., Carignan, J., and Keller, J. (2006) A new multi-mineral age reference material for 40Ar/39Ar, (U/Th)/He and fission track dating methods: The Limberg t3 tuff. Geostandards and Geoanalytical Research, 30, 73–86.Google Scholar

  • Langella, A., Bish, D.L., Cappelletti, P., Cerri, G., Colella, A., de’Gennaro, R., Graziano, S.F., Perrotta, A., Scarpati, C., and de’Gennaro, M. (2013) New insights into the mineralogical facies distribution of Campanian Ignimbrite, a relevant Italian industrial material. Applied Clay Science, 72, 55–73.Google Scholar

  • Leggo, P.J., and Ledésert, B. (2001) Use of organo-zeolitic fertilizer to sustain plant growth and stabilize metallurgical and mine-waste sites. Mineralogical Magazine, 65, 563–570.Google Scholar

  • Leggo, P.J., Ledésert, B., and Day, J. (2010) Organo-zeolitic treatment of mine waste to enhance the growth of vegetation. European Journal of Mineralogy, 22, 813–822.Google Scholar

  • Loewenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist, 39, 92–96.Google Scholar

  • Madsen, I.C., and Scarlett, N.V.Y. (2008) Quantitative phase analysis. In R.E. Dinnebier and S.J.L. Billinge, Eds., Powder diffraction: theory and practice, p. 298–331. RSC Publishing, Cambridge, U.K.Google Scholar

  • Marzi, E. (1983) Die Mineralien des Fohbergs bei Bötzingen (Oberschaffhausen) im Kaiserstuhl. Der Aufschluss, 34, 205–214.Google Scholar

  • Marzi, E., and Spürgin, S. (2017) Neufund im klassischen Vulkangebiet—Merlinoit aus dem Kaiserstuhl. Lapis, 5, 12–23.Google Scholar

  • Mercurio, M., Mercurio, V., de Gennaro, B., de Gennaro, M., Grifa, C., Langella, A., and Morra, V. (2010) Natural zeolites and white wines from Campania region (Southern Italy): a new contribution for solving some oenological problems. Periodico di Mineralogia, 79, 95–112.Google Scholar

  • Mercurio, M., Cappelletti, P., de Gennaro, B., de Gennaro, M., Bovera, F., Iannaccone, F., Grifa, C., Langella, A., Monetti, V., and Esposito, L. (2016) The effect of digestive activity of pig gastro-intestinal tract on zeolite-rich rocks: An in vitro study. Microporous and Mesoporous Materials, 225, 133–136.Google Scholar

  • Mercurio, M., Izzo, F., Langella, A., Grifa, C., Germinario, C., Daković, A., Aprea, P., Pasquino, R., Cappelletti, P., Graziano, F.S., and De Gennaro, B. (2018) Surface-modified phillipsite-rich tuff from the Campania region (southern Italy) as a promising drug carrier: An ibuprofen sodium salt trial. American Mineralogist, 103, 700–710.Google Scholar

  • Mertens, G., Snellings, R., Van Balen, K., Bicer-Simsir, B., Verlooy, P., and Elsen, J. (2009) Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cement and Concrete Research, 39, 233–240.Google Scholar

  • Napia, C., Sinsiri, T., Jaturapitakkul, C., and Chindaprasirt, P. (2012) Leaching of heavy metals from solidified waste using portland cement and zeolite as a binder. Waste Management, 32, 1459–1467.Google Scholar

  • Neuhoff, P.S. (2000) Thermodynamic properties and parageneses of rock-forming zeolites. Ph.D. thesis, 240 p. Stanford University, California.Google Scholar

  • Neuhoff, P.S., Fridriksson, T., Arnorsson, S., and Bird, D.K. (1999) Porosity evolution and mineral paragenesis during low-grade metamorphism of basaltic lavas at Teigarhorn, eastern Iceland. American Journal of Science, 299, 467–501.Google Scholar

  • Neuhoff, P.S., Rogers, K.L., Stannius, L.S., Bird, D.K., and Pedersen, A.K. (2006) Regional very low-grade metamorphism of basaltic lavas, Disko-Nuussuaq region, West Greenland. Lithos, 92, 33–54.Google Scholar

  • Özen, S., Göncüoğlu, M.C., Liguori, B., de Gennaro, B., Cappelletti, P., Gatta, G.D., Iucolano, F., and Colella, C. (2016) A comprehensive evaluation of sedimentary zeolites from Turkey as pozzolanic addition of cement- and lime-based binders. Construction and Building Materials, 105, 46–61.Google Scholar

  • Passaglia, E. (1970) The crystal chemistry of chabazite. American Mineralogist, 55, 1278–1301.Google Scholar

  • Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A.B., and Ortega-Huertas, M. (2009) Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist, 94, 578–593.Google Scholar

  • Rogers, K.L., Neuhoff, P.S., Pedersen, A.K., and Bird, D.K. (2006) CO2 metasomatism in a basalt-hosted petroleum reservoir, Nuussuaq, West Greenland. Lithos, 92, 55–82.Google Scholar

  • Salvi, S., Fontan, F., Monchoux, P., Williams-Jones, A.E., and Moine, B. (2000) Hydrothermal mobilization of high field strength elements in alkaline igneous systems: Evidence from the Tamazeght complex (Morocco). Economic Geology, 95, 559–576.Google Scholar

  • Schilling, J., Marks, M.A.W., Wenzel, T., and Markl, G. (2009) Reconstruction of magmatic to subsolidus processes in an agpaitic system using eudialyte textures and composition: a case study from Tamazeght, Morocco. Canadian Mineralogist, 47, 351–365.Google Scholar

  • Schilling, J., Marks, M.A.W., Wenzel, T., Vennemann, T., Horváth, L., Tarassoff, P., Jacob, D.E., and Markl, G. (2011) The magmatic to hydrothermal evolution of the intrusive Mont Saint-Hilaire Complex: insights into the late-stage evolution of peralkaline rocks. Journal of Petrology, 52, 2147–2185.Google Scholar

  • Snellings, R., Mertens, G., Gasharova, B., Garbev, K., and Elsen, J. (2010a) The pozzolanic reaction between clinoptilolite and portlandite: a time and spatially resolved IR study. European Journal of Mineralogy, 22, 767–777.Google Scholar

  • Snellings, R., Mertens, G., and Elsen, J. (2010b) Calorimetric evolution of the early pozzolanic reaction of natural zeolites. Journal of Thermal Analysis and Calorimetry, 101, 97–105.Google Scholar

  • Snellings, R., Mertens, G., and Elsen, J. (2012) Supplementary cementitious materials. Reviews in Mineralogy and Geochemistry, 74, 211–278.Google Scholar

  • Spürgin, S., Weisenberger, T., and Hörth, J. (2008) Das Leucitophyrvorkommen vom Strümpfekopf im Kaiserstuhl—eine historische und mineralogische Betrachtung. Berichte der naturforschenden Gesellschaft zu Freiburg i.Br., 98, 221–244.Google Scholar

  • Spürgin, S., Weisenberger, T., Rosing-Schow, N., and Vasilopoulos, M. (2014) Phonolite-hosted zeolite deposits in the Kaiserstuhl Volcanic Complex, Germany. Zeolites 2014 Book of Abstracts, Belgrade, 221–222.Google Scholar

  • Tschernich, R.W. (1992) Zeolites of the World, 563 p. Geoscience Press, Phoenix.Google Scholar

  • van Reeuwijk, L.P. (1972) High-temperature phases of zeolites of the natrolite group. American Mineralogist, 57, 499–510.Google Scholar

  • Wedepohl, K.H., Gohn, E., and Hartmann, G. (1994) Cenozoic alkali basaltic magmas of western Germany and their products of differentiation. Contributions to Mineralogy and Petrology, 115, 253–278.Google Scholar

  • Weisenberger, T., and Selbekk, R.S. (2009) Multi-stage zeolite facies mineralization in the Hvalfjördur area, Iceland. International Journal of Earth Sciences, 98, 985–999.Google Scholar

  • Weisenberger, T., and Spürgin, S. (2009) Zeolites in alkaline rocks of the Kaiserstuhl Volcanic Complex—new microprobe investigation and their relationship to the host rock. Geologica Belgica, 12, 75–91.Google Scholar

  • Weisenberger, T.B., Spürgin, S., and Lahaye, Y. (2014) Hydrothermal alteration and zeolitization of the Fohberg phonolite, Kaiserstuhl Volcanic Complex, Germany. International Journal of Earth Sciences, 103, 2273–2300.Google Scholar

  • Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.Google Scholar

  • Wilson, M., and Downes, H. (1991) Tertiary-Quaternary extension-related alkaline magmatism in western and central Europe. Journal of Petrology, 32, 811–849.Google Scholar

  • Wimmenauer, W. (1962) Beiträge zur Petrographie des Kaiserstuhls. Teil IV: Die Gesteine der phonolitischen Familie. Teil V: Die subvulkanischen Breccien. Neues Jahrbuch für Mineralogie Abhandlungen, 98, 367–415.Google Scholar

  • Wimmenauer, W. (1974) The alkaline province of central Europe and France. In H. Sorensen, Ed., The Alkaline Rocks, p. 286–291. Wiley.Google Scholar

  • Wimmenauer, W. (2003) Geologische Karte von Baden-Württemberg 1:25 000, Kaiserstuhl. Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg, Freiburg.Google Scholar

  • Wimmenauer, W. (2010) Kalkadern in vulkanischen und Sedimentgesteinen des Kaiserstuhls. Mitteilungen des badischen Landesvereins für Naturkunde und Naturschutz, 21, 49–67.Google Scholar

About the article


Received: 2018-09-30

Accepted: 2019-02-11

Published Online: 2019-04-26

Published in Print: 2019-05-27


Citation Information: American Mineralogist, Volume 104, Issue 5, Pages 659–670, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6831.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in