Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 104, Issue 5


Phase, morphology, elemental composition, and formation mechanisms of biogenic and abiogenic Fe-Cu-sulfide nanoparticles: A comparative study on their occurrences under anoxic conditions

Muammar Mansor / Debora Berti
  • Virginia Tech National Center for Earth and Environmental Nanotechnology (NanoEarth), Blacksburg, Virginia 24061, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael F. Hochella Jr.
  • Virginia Tech National Center for Earth and Environmental Nanotechnology (NanoEarth), Blacksburg, Virginia 24061, U.S.A.
  • Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mitsuhiro Murayama
  • Virginia Tech National Center for Earth and Environmental Nanotechnology (NanoEarth), Blacksburg, Virginia 24061, U.S.A.
  • Department of Material Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jie Xu
Published Online: 2019-04-26 | DOI: https://doi.org/10.2138/am-2019-6848


We report on a systematic study on the physicochemical attributes of synthetic Fe-Cu-sulfide nanoparticles (NPs) precipitated under conditions similar to the anoxic, low-temperature aqueous, sedimentary, soil, and subsurface environments where these NPs have been repeatedly identified. Characterizing the basic attributes of these NPs is the first step in understanding their behaviors in various processes including in the bio-availability of essential and toxic metals, environmental remediation, and resource recovery. Abiotic experiments are compared to biotic experiments in the presence of the sulfate-reducer Desulfovibrio vulgaris to elucidate biological controls on NP formation. First, the single-metal end-member NPs are determined by precipitation in a solution containing either aqueous Fe(II) or Cu(II). Limited differences are observed between biogenic and abiogenic precipitates aged for up to one month; the Fe-only experiments resulted in 4–10 nm mackinawite (FeS) NPs that aggregate to form nanosheets up to ~1000 nm in size, while the Cu-only experiments resulted in mixtures of covellite (CuS) NPs comprised of <10 nm fine nanocrystals, 20–40 × 6–9 nm nanorods, and ~30 nm nanoplates. The crystal sizes of biogenic mackinawite and covellite are, respectively, larger and smaller than their abiogenic counterparts, indicating a mineral-specific response to biological presence. Structural defects are observable in the fine nanocrystals and nanorods of covellite in both biogenic and abiogenic experiments, indicative of intrinsic NP instability and formation mechanism via particle attachment. In contrast, covellite nanoplates are defect free, indicating high stability and potentially rapid recrystallization following particle attachment. Next, mixed-metal sulfide NPs are precipitated at variable initial aqueous Fe-to-Cu ratios (2:1, 1:1, and 1:5). With an increasing ratio of Fe-to-Cu, Fe-rich covellite, nukundamite (Cu5.5FeS6.5), chalcopyrite (CuFeS2), and Cu-rich mackinawite are formed. The Fe-rich covellite NPs are larger (100–200 nm) than covellite precipitated in the absence of Fe, indicating a role for Fe in promoting crystal growth. Chalcopyrite and nukundamite are formed through the incorporation of Fe into precursor covellite NPs while retaining the original crystal morphology, as confirmed by doping a covellite suspension with aqueous Fe(II), resulting in the formation of chalcopyrite and nukundamite within days. Additionally, in the biological systems, we observe the recrystallization of mackinawite to greigite (Fe3S4) after six months of incubation in the absence of Cu and the selective formation of chalcopyrite and nukundamite at lower initial Fe-to-Cu ratios compared to abiotic systems. These observations are consistent with NP precipitation that are influenced by the distinct (sub)micro-environments around bacterial cells compared to the bulk solution. Comparative TEM analyses indicate that the synthetic NPs are morphologically similar to NPs identified in natural environments, opening ways to studying behaviors of natural NPs using experimental approaches.

Keywords: Metal sulfide nanoparticle; mackinawite; covellite; chalcopyrite; greigite; biomineral

References cited

  • Banfield, J.F., and Zhang, H. (2001) Nanoparticles in the environment. Reviews in Mineralogy and Geochemistry, 44, 1–158.Google Scholar

  • Benning, L.G., and Waychunas, G.A. (2008) Nucleation, growth, and aggregation of mineral phases: Mechanisms and kinetic controls. In S.L. Brantley, J.D. Kubicki, and A.F. White, Eds., Kinetics of Water-Rock Interaction, pp. 259–333. Springer.Google Scholar

  • Benning, L.G., Wilkin, R.T., and Konhauser, K.O. (1999) Iron monosuphide stability: Experiments with sulphate reducing bacteria. In H. Armannsson, Ed., Geochemistry of the Earth’s Surface pp. 429–432. A.A. Balkema, Rotterdam.Google Scholar

  • Benning, L.G., Wilkin, R.T., and Barnes, H.L. (2000) Reaction pathways in the Fe-S system below 100 °C. Chemical Geology, 167, 25–51.Google Scholar

  • Berner, R.A. (1984) Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48, 605–615.Google Scholar

  • Beveridge, T.J., and Koval, S.F. (1981) Binding of metals to cell envelopes of Escherichia coli K-12. Apppied and Environmental Microbiology, 42, 325–335.Google Scholar

  • Beveridge, T.J., and Murray, R.G.E. (1976) Uptake and retention of metals by cell walls of Bacillus subtilis. Journal of Bacteriology, 127, 1502–1518.Google Scholar

  • Boekema, C., Krupski, A.M., Varasteh, M., Parvin, K., Van Til, F., Van Der Woude, F., and Sawatzky, G.A. (2004) Cu and Fe valence states in CuFeS2 Journal of Magnetism and Magnetic Materials, 272-276, 559–561.

  • Bosch, J., Lee, K.Y., Jordan, G., Kim, K.W., and Meckenstock, R.U. (2012) Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Environmental Science and Technology, 46, 2095–2101.Google Scholar

  • Bourdoiseau, J.A., Jeannin, M., Rémazeilles, C., Sabot, R., and Refait, P. (2011) The transformation of mackinawite into greigite studied by Raman spectroscopy. Journal of Raman Spectroscopy, 42, 496–504.Google Scholar

  • Burton, E.D., Bush, R.T., Sullivan, L.A., Hocking, R.K., Mitchell, D.R.G., Johnston, S.G., Fitzpatrick, R.W., Raven, M., McClure, S., and Jang, L.Y. (2009) Iron-monosulfide oxidation in natural sediments: Resolving microbially mediated S transformations using XANES, electron microscopy, and selective extractions. Environmental Science and Technology, 43, 3128–3134.Google Scholar

  • Caraballo, M.A., Michel, F.M., and Hochella, M.F. (2015) The rapid expansion of environmental mineralogy in unconventional ways: Beyond the accepted definition of a mineral, the latest technology, and using nature as our guide. American Mineralogist, 100, 14–25.Google Scholar

  • Chen, G., Chen, X., Yang, Y., Hay, A.G., Yu, X., and Chen, Y. (2011) Sorption and distribution of copper in unsaturated Pseudomonas putida CZ1 biofilms as determined by X‑ray fluorescence microscopy. Applied and Environmental Microbiology, 77, 4719–4727.Google Scholar

  • Ciglenečki, I., Krznarić, D., and Helz, G.R. (2005) Voltammetry of copper sulfide particles and nanoparticles: Investigation of the cluster hypothesis. Environmental Science and Technology, 39, 7492–7498.Google Scholar

  • Clark, A.H. (1971) A note on iron-bearing normal covellite. Neues Jahrbuch für Mineralogie, Monatshefte, 424.

  • Conejeros, S., Alemany, P., Llunell, M., Moreira, I.de.P.R, Sánchez, V., and Llanos, J. (2015) Electronic structure and magnetic properties of CuFeS2 Inorganic Chemistry, 54, 4840–4849.Google Scholar

  • Cowper, M., and Rickard, D. (1989) Mechanism of chalcopyrite formation from iron monosulphides in aqueous solutions (<100°C, pH 2–4.5). Chemical Geology, 78, 325–341.Google Scholar

  • Csákberényi-Malasics, D., Rodriguez-Blanco, J.D., Kis, V.K., Rečnik, A., Benning, L.G., and Pósfai, M. (2012) Structural properties and transformations of precipitated FeS. Chemical Geology, 294-295, 249–258.

  • da Costa, J.P., Girão, A.V., Lourenço, J.P., Monteiro, O.C., Trindade, T., and Costa, M.C. (2013) Green synthesis of covellite nanocrystals using biologically generated sulfide: Potential for bioremediation systems. Journal of Environmental Management, 128, 226–232.Google Scholar

  • De Los Ríos, A., Wierzchos, J., Sancho, L.G., and Ascaso, C. (2003) Acid microenvironments in microbial biofilms of antarctic endolithic microecosystems. Environmental Microbiology, 5, 231–237.Google Scholar

  • De Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., Penn, R.L., Whitelam, S., Joester, D., Zhang, H., Rimer, J.D., Navrotsky, A., Banfield, J.F., and others. (2015) Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 349, aaa6760.Google Scholar

  • Des Marais, D.J., Nuth, J.A., Allamandola, L.J., Boss, A.P., Farmer, J.D., Hoehler, T.M., Jakosky, B.M., Meadows, V.S., Pohorille, A., Runnegar, B., and others. (2008) The NASA Astrobiology Roadmap. Astrobiology, 8, 715–730.Google Scholar

  • Donald, R., and Southam, G. (1999) Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochimica et Cosmochimica Acta, 63, 2019–2023.Google Scholar

  • Downs, R.T., and Hall-Wallace, M. (2003) The American Mineralogist Crystal Structure Database. American Mineralogist, 88, 247–250.Google Scholar

  • Du, W., Qian, X., Xiaodong, M., Gong, Q., Cao, H., and Yin, J. (2007) Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chemistry—A European Journal, 13, 3241–3247.Google Scholar

  • Echigo, T., Aruguete, D.M., Murayama, M., and Hochella, M.F. (2012) Influence of size, morphology, surface structure, and aggregation state on reductive dissolution of hematite nanoparticles with ascorbic acid. Geochimica et Cosmochimica Acta, 90, 149–162.Google Scholar

  • Eskelsen, J.R., Xu, J., Chiu, M., Moon, J.W., Wilkins, B., Graham, D.E., Gu, B., and Pierce, E.M. (2018) Influence of structural defects on biomineralized ZnS nanoparticle dissolution: An in-situ electron microscopy study. Environmental Science and Technology, 52, 1139–1149.Google Scholar

  • Falagán, C., Grail, B.M., and Johnson, D.B. (2017) New approaches for extracting and recovering metals from mine tailings. Minerals Engineering, 106, 71–78.Google Scholar

  • Ferris, F., Schultze, S., Witten, T., Fyfe, W., Beveridge, T., and Schultz, S. (1989) Metal interactions with microbial biofilms in acidic and neutral pH environments. Applied and Environmental Microbiology, 55, 1249–1257.Google Scholar

  • Fortin, D., Southam, G., and Beveridge, T.J. (1994) Nickel sulfide, iron-nickel sulfide and iron sulfide precipitation by a newly isolated Desulfotomaculum species and its relation to nickel resistance. FEMS Microbiology Ecology, 14, 121–132.Google Scholar

  • Fulda, B., Voegelin, A., Ehlert, K., and Kretzschmar, R. (2013) Redox transformation, solid phase speciation and solution dynamics of copper during soil reduction and reoxidation as affected by sulfate availability. Geochimica et Cosmochimica Acta, 123, 385–402.Google Scholar

  • Gartman, A., Findlay, A.J., and Luther, G.W. (2014) Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. Chemical Geology, 366, 32–41.Google Scholar

  • Goh, S.W., Buckley, A.N., Lamb, R.N., Rosenberg, R.A., and Moran, D. (2006) The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochimica et Cosmochimica Acta, 70, 2210–2228.Google Scholar

  • Gramp, J.P., Sasaki, K., Bigham, J.M., Karnachuk, O.V., and Tuovinen, O.H. (2006) Formation of covellite (CuS) under biological sulfate-reducing conditions. Geomicrobiology Journal, 23, 613–619.Google Scholar

  • Gramp, J.P., Bigham, J.M., Jones, F.S., and Tuovinen, O.H. (2010) Formation of Fesulfides in cultures of sulfate-reducing bacteria. Journal of Hazardous Materials, 175, 1062–1067.Google Scholar

  • Gregory, D.D., Large, R.R., Halpin, J.A., Baturina, E.L., Lyons, T.W., Wu, S., Danyushevsky, L., Sack, P.J., Chappaz, A., Maslennikov, V.V., and others. (2015) Trace element content of sedimentary pyrite in black shales. Economic Geology, 110, 1389–1410.Google Scholar

  • Guilbaud, R., Butler, I.B., Ellam, R.M., and Rickard, D. (2010) Fe isotope exchange between Fe(II)aq and nanoparticulate mackinawite (FeSm during nanoparticle growth. Earth and Planetary Science Letters, 300, 174–183.Google Scholar

  • Hao, L., Li, J., Kappler, A., and Obst, M. (2013) Mapping of heavy metal ion sorption to cell-extracellular polymeric substance-mineral aggregates by using metal-selective fluorescent probes and confocal laser scanning microscopy. Applied and Environmental Microbiology, 79, 6524–6534.Google Scholar

  • Harmandas, N.G., and Koutsoukos, P.G. (1996) The formation of iron(II) sulfides in aqueous solutions. Journal of Crystal Growth, 167, 719–724.Google Scholar

  • Harmandas, N.G., Navarro Fernandez, E., and Koutsoukos, P.G. (1998) Crystal growth of pyrite in aqueous solutions. Inhibition by organophosphorus compounds. Langmuir, 14, 1250–1255.Google Scholar

  • Heidelberg, J.F., Seshadri, R., Haveman, S.A., Hemme, C.L., Paulsen, I.T., Kolonay, J.F., Eisen, J.A., Ward, N., Methe, B., Brinkac, L.M., and others. (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotechnology, 22, 554–559.Google Scholar

  • Herbert, R.B., Benner, S.G., Pratt, A.R., and Blowes, D.W. (1998) Surface chemistry and morphology of poorly crystalline iron sulfides precipitated in media containing sulfate-reducing bacteria. Chemical Geology, 144, 87–97.Google Scholar

  • Hidalgo, G., Burns, A., Herz, E., Hay, A.G., Houston, P.L., Wiesner, U., and Lion, L.W. (2009) Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors. Applied and Environmental Microbiology, 75, 7426–7435.Google Scholar

  • Hochella, M.F., Moore, J.N., Putnis, C.V., Putnis, A., Kasama, T., and Eberl, D.D. (2005) Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability. Geochimica et Cosmochimica Acta, 69, 1651–1663.Google Scholar

  • Hochella, M.F., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L., and Twining, B.S. (2008) Nanominerals, mineral nanoparticles, and Earth systems. Science, 319, 1631–1635.Google Scholar

  • Hochella, M.F., Aruguete, D.M., Kim, B., and Madden, A. S. (2012) Naturally occurring inorganic nanoparticles: General assessment and a global budget for one of Earth’s last unexplored geochemical components. In A.S. Barnard and H. Guo, Eds., Nature’s Nanostructures, pp. 1–42. Pan Stanford Publishing, Singapore.Google Scholar

  • Hofacker, A.F., Voegelin, A., Kaegi, R., Weber, F.A., and Kretzschmar, R. (2013) Temperature-dependent formation of metallic copper and metal sulfide nanoparticles during flooding of a contaminated soil. Geochimica et Cosmochimica Acta, 103, 316–332.Google Scholar

  • Horneck, G., Walter, N., Westall, F., Grenfell, J.L., Martin, W.F., Gomez, F., Leuko, S., Lee, N., Onofri, S., Tsiganis, K., and others. (2016) AstRoMap European Astrobiology Roadmap. Astrobiology, 16, 201–243.Google Scholar

  • Hunter, R.C., and Beveridge, T.J. (2005) Application of a pH-sensitive gluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 71, 2501–2510.Google Scholar

  • Ikkert, O.P., Gerasimchuk, A.L., Bukhtiyarova, P.A., Tuovinen, O.H., and Karnachuk, O. V. (2013) Characterization of precipitates formed by H2S-producing, Cu-resistant Firmicute isolates of Tissierella from human gut and Desulfosporosinus from mine waste. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 103, 1221–1234.Google Scholar

  • Ikogou, M., Ona-Nguema, G., Juillot, F., Le Pape, P., Menguy, N., Richeux, N., Guigner, J.M., Noël, V., Brest, J., Baptiste, B., and others. (2017) Long-term sequestration of nickel in mackinawite formed by Desulfovibrio capillatus upon Fe(III)-citrate reduction in the presence of thiosulfate. Applied Geochemistry, 80, 143–154.Google Scholar

  • Ikuma, K., Decho, A.W., and Lau, B.L.T. (2015) When nanoparticles meet biofilms— Interactions guiding the environmental fate and accumulation of nanoparticles. Frontiers in Microbiology, 6, 1–6.Google Scholar

  • Jalali, K.K., and Baldwin, S.A. (2000) The role of sulfate reducing bacteria in copper removal from aqueous sulfate solutions. Water Research, 34, 797–806.Google Scholar

  • Karnachuk, O.V., Sasaki, K., Gerasimchuk, A.L., Sukhanova, O., Ivasenko, D.A., Kaksonen, A.H., Puhakka, J.A., and Tuovinen, O.H. (2008) Precipitation of Cu-sulfides by copper-tolerant Desulfovibrio isolates. Geomicrobiology Journal, 25, 219–227.Google Scholar

  • Kiran, M.G., Pakshirajan, K., and Das, G. (2015) Heavy metal removal using sulfate-reducing biomass obtained from a lab-scale upflow anaerobic-packed bed reactor. Environmental Engineering, 142, 1–8.Google Scholar

  • Klekovkina, V.V., Gainov, R.R., Vagizov, F.G., Dooglav, A.V., Golovanevskiy, V.A., and Pen’kov, I.N. (2014) Oxidation and magnetic states of chalcopyrite CuFeS2 A first principles calculation. Optics and Spectroscopy, 116, 885–888.Google Scholar

  • Kwon, K.D., Refson, K., and Sposito, G. (2015) Transition metal incorporation into mackinawite (tetragonal FeS). American Mineralogist, 100, 1509–1517.Google Scholar

  • Labrenz, M., Druschel, G.K., Thomsen-Ebert, T., Gilbert, B., Welch, S.A., Kemner, K.M., Logan, G.A., Summons, R.E., De Stasio, G., Bond, P.L., and others. (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 290, 1744–1747.Google Scholar

  • Langford, J.I., and Wilson, A.J.C. (1978) Scherrer after sixty years: A survey and some new results in the determination of crystallite size. Journal of Applied Crystallography, 11, 102–113.Google Scholar

  • Large, R.R., Halpin, J.A., Danyushevsky, L.V., Maslennikov, V.V., Bull, S.W., Long, J.A., Gregory, D.D., Lounejeva, E., Lyons, T.W., Sack, P.J., and others. (2014) Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth and Planetary Science Letters, 389, 209–220.Google Scholar

  • Lead, J.R., and Wilkinson, K.J. (2006) Aquatic colloids and nanoparticles: Current knowledge and future trends. Environmental Chemistry, 3, 159–171.Google Scholar

  • Lennie, A.R. (1995) Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS. Mineralogical Magazine, 59, 677–683.Google Scholar

  • Lett, R.E.W., and Fletcher, W.K. (1980) Syngenetic sulphide minerals in a copper-rich bog. Mineralium Deposita, 15, 61–67.Google Scholar

  • Li, W., Shavel, A., Guzman, R., Rubio-Garcia, J., Flox, C., Fan, J., Cadavid, D., Ibáñez, M., Arbiol, J., Morante, J.R., and others (2011) Morphology evolution of Cu2-xS nanoparticles: from spheres to dodecahedrons. Chemical Communications, 47, 10332.Google Scholar

  • Liang, Y.J., Chai, L.Y., Min, X.B., Tang, C.J., Zhang, H.J., Ke, Y., and Xie, X. De (2012) Hydrothermal sulfidation and floatation treatment of heavy-metal-containing sludge for recovery and stabilization. Journal of Hazardous Materials, 217–218, 307–314.Google Scholar

  • Libert, S., Gorshkov, V., Privman, V., Goia, D., and Matijević, E. (2003) Formation of monodispersed cadmium sulfide particles by aggregation of nanosize precursors. Advances in Colloid and Interface Science, 100-102, 169–183.Google Scholar

  • Liu, Y., Yin, D., and Swihart, M.T. (2018) Valence selectivity of cation incorporation into covellite CuS nanoplatelets. Chemistry of Materials, 30, 1399–1407.Google Scholar

  • Luther, G.W. (1991) Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimica Acta, 55, 2839–2849.Google Scholar

  • Luther, G.W., and Rickard, D.T. (2005) Metal sulfide cluster complexes and their biogeochemical importance in the environment. Journal of Nanoparticle Research, 7, 389–407.Google Scholar

  • Luther, G.W., Theberge, S.M., Rozan, T.F., Rickard, D., Rowlands, C.C., and Oldroyd, A. (2002) Aqueous copper sulfide clusters as intermediates during copper sulfide formation. Environmental Science and Technology, 36, 394–402.Google Scholar

  • Mansor, M., Hamilton, T.L., Fantle, M.S., and Macalady, J.L. (2015) Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing. Frontiers in Microbiology, 6, 1–14.Google Scholar

  • Mantha, H., Schindler, M., and Hochella, M.F. (2019) Occurrence and formation of incidental metallic Cu and CuS nanoparticles in organic-rich contaminated surface soils in Timmins, Ontario. Environmental Science: Nano, 6(1), 163–179. https://pubs.rsc.org/en/content/articlehtml/2018/en/c8en00994e

  • Maydagán, L., Franchini, M., Lentz, D., Pons, J., and McFarlane, C. (2013) Sulfide composition and isotopic signature of the Altar Cu-Au deposit: Argentina: Constraints on the evolution of the porphyry-epithermal system. Canadian Mineralogist, 51, 813–840.Google Scholar

  • Melekestseva, I.Y., Maslennikov, V.V., Maslennikova, S.P., Danyushevsky, L.V., and Large, R. (2017) Covellite of the Semenov-2 hydrothermal field (13°31.13′ N, Mid-Atlantic Ridge): Enrichment in trace elements according to LA ICP MS analysis. Doklady Earth Sciences, 473, 291–295.Google Scholar

  • Michel, F.M., Antao, S.M., Chupas, P.J., Lee, P.L., Parise, J.B., and Schoonen, M.A.A. (2005) Short- to medium-range atomic order and crystallite size of the initial FeS precipitate from pair distribution function analysis. Chemistry of Materials, 17, 6246–6255.Google Scholar

  • Morales-García, Á., He, J., Soares, A.L., and Duarte, H.A. (2017) Surfaces and morphologies of covellite (CuS) nanoparticles by means of Ab initio atomistic thermodynamics. CrystEngComm, 19, 3078–3084.Google Scholar

  • Moreau, J.W., Webb, R.I., and Banfield, J.F. (2004) Ultrastructure, aggregation-state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite. American Mineralogist, 89, 950–960.Google Scholar

  • Moreau, J.W., Weber, P.K., Martin, M.C., Gilbert, B., Hutcheon, I.D., and Banfield, J.F. (2007) Extracellular proteins limit the dispersal of biogenic nanoparticles. Science, 316, 13–16.Google Scholar

  • Morin, G., Noël, V., Menguy, N., Brest, J., Baptiste, B., Tharaud, M., Ona-Nguema, G., Ikogou, M., Viollier, E., and Juillot, F. (2017) Nickel accelerates pyrite nucleation at ambient temperature. Geochemical Perspectives Letters, 6–11.

  • Morse, J.W., and Arakaki, T. (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochimica et Cosmochimica Acta, 57, 3635–3640.Google Scholar

  • Morse, J.W., and Luther, G.W. (1999) Chemical influence on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63, 3378.Google Scholar

  • Mullaugh, K.M., and Luther, G.W. (2011) Growth kinetics and long-term stability of CdS nanoparticles in aqueous solution under ambient conditions. Journal of Nanoparticle Research, 13, 393–404.Google Scholar

  • Newbury, D.E., and Ritchie, N.W.M. (2014) Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X‑ray spectrometry (SEM/SDD-EDS). Journal of Materials Science, 50, 493–518.Google Scholar

  • Niu, Z., Pan, H., Guo, X., Lu, D., Feng, J., Chen, Y., Tou, F., Liu, M., and Yang, Y. (2018) Sulphate-reducing bacteria (SRB) in the Yangtze Estuary sediments: Abundance, distribution and implications for the bioavailibility of metals. Science of the Total Environment, 634, 296–304.Google Scholar

  • Nowack, B., Ranville, J.F., Diamond, S., Gallego-Urrea, J.A., Metcalfe, C., Rose, J., Horne, N., Koelmans, A.A., and Klaine, S.J. (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environmental Toxicology and Chemistry, 31, 50–59.Google Scholar

  • Ohfuji, H., and Rickard, D. (2006) High resolution transmission electron microscopic study of synthetic nanocrystalline mackinawite. Earth and Planetary Science Letters, 241, 227–233.Google Scholar

  • Pankhania, I.P., Gow, L.A., and Hamilton, W.A. (1986) The effect of hydrogen on the growth of Desulfovibrio vulgaris (Hildenborough) on lactate. Journal of General Microbiology, 132, 3349–3356.Google Scholar

  • Parkman, R.H., Charnock, J.M., Bryan, N.D., Livens, F.R., and Vaughan, D.J. (1999) Reactions of copper and cadmium ions in aqueous solution with goethite, lepidocrocite, mackinawite, and pyrite. American Mineralogist, 84, 407–419.Google Scholar

  • Pattrick, R.A.D., Mosselmans, J.F.W., Charnock, J.M., England, K.E.R., Helz, G.R., Garner, C.D., and Vaughan, D.J. (1997) The structure of amorphous copper sulfide precipitates: An X‑ray absorption study. Geochimica et Cosmochimica Acta, 61, 2023–2036.Google Scholar

  • Pearce, C.I., Pattrick, R.A.D., Vaughan, D.J., Henderson, C.M.B., and van der Laan, G. (2006) Copper oxidation state in chalcopyrite: Mixed Cu d9 and d10 characteristics. Geochimica et Cosmochimica Acta, 70, 4635–4642.Google Scholar

  • Penn, R.L., and Banfield, J.F. (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 281, 969–971.Google Scholar

  • Picard, A., Gartman, A., and Girguis, P.R. (2016) What do we really know about the role of microorganisms in iron sulfide mineral formation? Frontiers in Earth Science, 4, 1–10.Google Scholar

  • Picard, A., Gartman, A., Clarke, D.R., and Girguis, P.R. (2018) Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochimica et Cosmochimica Acta, 220, 367–384.Google Scholar

  • Pileni, M.P., Motte, L., Billoudet, F., Mahrt, J., and Willig, F. (1997) Nanosized silver sulfide particles: characterization, self-organization into 2D and 3D superlattices. Materials Letters, 31, 255–260.Google Scholar

  • Qafoku, N.P., Gartman, B.N., Kukkadapu, R.K., Arey, B.W., Williams, K.H., Mouser, P.J., Heald, S.M., Bargar, J.R., Janot, N., Yabusaki, S., and others. (2014) Geochemical and mineralogical investigation of uranium in multi-element contaminated, organic-rich subsurface sediment. Applied Geochemistry, 42, 77–85.Google Scholar

  • Rice, C.M., Atkin, D., Bowles, J.F.W., and Criddle, A.J. (1979) Nukundamite, a new mineral, and idaite. Mineralogical Magazine, 43, 193–200.Google Scholar

  • Rickard, D. (1975) Kinetics and mechanism of pyrite formation at low temperatures. American Journal of Science, 275, 636–652.Google Scholar

  • Rickard, D., and Luther, G.W. (2006) Metal sulfide complexes and clusters. Reviews in Mineralogy and Geochemistry, 61, 421–504.Google Scholar

  • Rickard, D., and Luther, G.W. (2007) Chemistry of iron sulfides. Chemical Reviews, 107, 514–562.Google Scholar

  • Roberts, W.M.B. (1961) Formation of chalcopyrite by reaction between chalcocite and pyrrhotite in cold solution. Nature, 191, 560–562.Google Scholar

  • Roberts, W.M.B. (1963) The low temperature synthesis in aqueous solution of chalcopyrite and bornite. Economic Geology, 58, 52–61.Google Scholar

  • Sampaio, R.M.M., Timmers, R.A., Xu, Y., Keesman, K.J., and Lens, P.N.L. (2009) Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor. Journal of Hazardous Materials, 165, 256–265.Google Scholar

  • Schliehe, C., Juarez, B.H., Pelletier, M., Jander, S., Greshnykh, D., Nagel, M., Meyer, A., Foerster, S., Kornowski, A., Klinke, C., and others. (2010) Ultrathin PbS sheets by two-dimensional oriented attachment. Science, 74, 550–554.Google Scholar

  • Schoonen, M.A., and Barnes, H.L. (1991) Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C. Geochimica et Cosmochimica Acta, 55, 1505–1514.Google Scholar

  • Sharma, V.K., Filip, J., Zboril, R., and Varma, R.S. (2015) Natural inorganic nanoparticles—formation, fate, and toxicity in the environment. Chemical Society Reviews, 44, 8410–8423.Google Scholar

  • Shea, D., and Helz, G.R. (1989) Solubility product constants of covellite and a poorly crystalline copper sulfide precipitate at 298 K. Geochimica et Cosmochimica Acta, 53, 229–236.Google Scholar

  • Sitte, J., Pollok, K., Langenhorst, F., and Küsel, K. (2013) Nanocrystalline nickel and cobalt sulfides formed by a heavy metal-tolerant, sulfate-reducing enrichment culture. Geomicrobiology Journal, 30, 36–47.Google Scholar

  • Sugaki, A., Shima, H., Kitakaze, A., and Mizota, T. (1981) Hydrothermal synthesis of nukundamite and its crystal structure. American Mineralogist, 66, 398–402.Google Scholar

  • Triboulet, S., Aude-Garcia, C., Armand, L., Collin-Faure, V., Chevallet, M., Diemer, H., Gerdil, A., Proamer, F., Strub, J.M., Habert, A., and others. (2015) Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages. PLoS ONE, 10, 1–22.Google Scholar

  • Veeramani, H., Scheinost, A.C., Monsegue, N., Qafoku, N.P., Kukkadapu, R., Newville, M., Lanzirotti, A., Pruden, A., Murayama, M., and Hochella, M.F. (2013) Abiotic reductive immobilization of U(VI) by biogenic mackinawite. Environmental Science and Technology, 47, 2361–2369.Google Scholar

  • Voordouw, G. (2002) Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. Journal of Bacteriology, 184, 5903–5911.Google Scholar

  • Wan, M., Schröder, C., and Peiffer, S. (2017) Fe(III):S(-II) concentration ratio controls the pathway and the kinetics of pyrite formation during sulfidation of ferric hydroxides. Geochimica et Cosmochimica Acta, 217, 334–348.Google Scholar

  • Weber, F.A., Voegelin, A., Kaegi, R., and Kretzschmar, R. (2009a) Contaminant mobilization by metallic copper and metal sulphide colloids in flooded soil. Nature Geoscience, 2, 267–271.Google Scholar

  • Weber, F.A., Voegelin, A., and Kretzschmar, R. (2009b) Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochimica et Cosmochimica Acta, 73, 5513–5527.Google Scholar

  • White, L.M., Bhartia, R., Stucky, G.D., Kanik, I., and Russell, M.J. (2015) Mackinawite and greigite in ancient alkaline hydrothermal chimneys: Identifying potential key catalysts for emergent life. Earth and Planetary Science Letters, 430, 105–114.Google Scholar

  • Wilkin, R.T., and Beak, D.G. (2017) Uptake of nickel by synthetic mackinawite. Chemical Geology, 462, 15–29.Google Scholar

  • Wolthers, M., Van der Gaast, S.J., and Rickard, D. (2003) The structure of disordered mackinawite. American Mineralogist, 88, 2007–2015.Google Scholar

  • Xu, H.L., Wang, W.Z., and Zhu, W. (2006) Oriented attachment of crystalline CuS nanorods. Chemistry Letters, 35, 264–265.Google Scholar

  • Xu, J., Murayama, M., Roco, C.M., Veeramani, H., Michel, F.M., Rimstidt, J.D., Winkler, C., and Hochella, M.F. (2016) Highly-defective nanocrystals of ZnS formed via dissimilatory bacterial sulfate reduction: A comparative study with their abiogenic analogues. Geochimica et Cosmochimica Acta, 180, 1–14.Google Scholar

  • Xu, J., Veeramani, H., Qafoku, N.P., Singh, G., Riquelme, M.V., Pruden, A., Kukkadapu, R.K., Gartman, B.N., and Hochella, M.F. (2017) Efficacy of acetate-amended biostimulation for uranium sequestration: Combined analysis of sediment/ground-water geochemistry and bacterial community structure. Applied Geochemistry, 78, 172–185.Google Scholar

  • Yücel, M., Gartman, A., Chan, C.S., and Luther, G.W. (2011) Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nature Geoscience, 4, 367–371.Google Scholar

  • Zavašnik, J., Stanković, N., Arshad, S.M., and Rečnik, A. (2014) Sonochemical synthesis of mackinawite and the role of Cu addition on phase transformations in the Fe-S system. Journal of Nanoparticle Research, 16, 2223.Google Scholar

  • Zbinden, M., Martinez, I., Guyot, F., Cambon-Bonavita, M.-A., and Gaill, F. (2001) Zinc-iron sulphide mineralization in tubes of hydrothermal vent worms. European Journal of Mineralogy, 13, 653–658.Google Scholar

  • Zhang, H., Zhang, Y., Yu, J., and Yang, D. (2008) Phase-selective synthesis and self-assembly of monodisperse copper sulfide nanocrystals. Journal of Physical Chemistry C, 112, 13390–13394.Google Scholar

  • Zhou, C., Vannela, R., Hayes, K.F., and Rittmann, B.E. (2014) Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris. Journal of Hazardous Materials, 272, 28–35.Google Scholar

About the article

† Present address: Oceanography Department, Texas A&M University, College Station, TX 77845, U.S.A.

Received: 2018-10-15

Accepted: 2019-01-15

Published Online: 2019-04-26

Published in Print: 2019-05-27

FundingThis work was funded by the grant DOE-BES DE-FG02-06ER15786 awarded by the Department of Energy to Mike Hochella, Mitsu Murayama, and Jie Xu and by the start-up grant to Jie Xu by the University of Texas at El Paso. This work uses shared facilities at the Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth), a member of the National Nanotechnology Coordinated Infrastructure (NNCI) network, supported by NSF (NNCI 1542100). NanoEarth is housed at Virginia Tech’s Institute for Critical Technology and Applied Sciences (ICTAS).

Citation Information: American Mineralogist, Volume 104, Issue 5, Pages 703–717, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6848.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in