Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 104, Issue 5

Issues

Melting curve minimum of barium carbonate BaCO3 near 5 GPa

Junjie Dong / Jie Li
  • Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Feng Zhu
  • Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zeyu Li
  • Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rami Farawi
  • Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-26 | DOI: https://doi.org/10.2138/am-2019-6891

Abstract

The melting point of barium carbonate (BaCO3) was determined at pressures up to 11 GPa using the ionic conductivity and platinum (Pt) sphere methods in a multi-anvil press. The melting point decreases with pressure from 2149 ± 50 K at 3 GPa to a fitted local minimum of 1849 K at 5.5 GPa, and then it rises with pressure to 2453 ± 50 K at 11 GPa. The fitted melting curve of BaCO3 based on the ionic conductivity measurements is consistent with the Pt sphere measurements that were carried out independently at selected pressures. The negative slope of the BaCO3 melting curve between 3 and 5.5 GPa indicates that the liquid is denser than the solid within this pressure range. Synchrotron X‑ray diffraction (XRD) measurements in a laser-heated diamond-anvil cell (LH-DAC) showed that BaCO3 transformed from the aragonite structure (Pmcn) to the post-aragonite structure (Pmmn) at 6.3 GPa and 1026 K as well as 8 GPa and 1100 K and the post-aragonite structure remained metastable upon quenching and only reverted back to the witherite structure upon pressure release. The local minimum near 5 GPa is attributed to the triple point where the melting curve of BaCO3 meets a phase transition to the denser post-aragonite structure (Pmmn). Local minima in the melting curves of alkaline earth carbonates would lead to incipient melting of carbonated rocks in Earth’s mantle.

Keywords: Barium carbonate; melting point; density crossover; phase transition; negative melting slope; post-aragonite structure; Earth in Five Reactions; A Deep Carbon Perspective

References cited

  • Antao, S.M., and Hassan, I. (2007) BaCO3 high-temperature crystal structures and the PmcnR3m phase transition at 811 °C. Physics and Chemistry of Minerals, 34(8), 573–580.Google Scholar

  • Arapan, S., De Almeida, J.S., and Ahuja, R. (2007) Formation of sp3 hybridized bonds and stability of CaCO3 at very high pressure. Physical Review Letters, 98(26), 268501.Google Scholar

  • Arvanitidis, I., Siche, D., and Seetharaman, S. (1996) A study of the thermal decomposition of BaCO3 Metallurgical and Materials Transactions B, 27(3), 409–416.Google Scholar

  • Bayarjargal, L., Fruhner, C.J., Schrodt, N., and Winkler, B. (2018) CaCO3 phase diagram studied with Raman spectroscopy at pressures up to 50 GPa and high temperatures and DFT modeling. Physics of the Earth and Planetary Interiors, 281, 31–45.Google Scholar

  • Boulard, E., Pan, D., Galli, G., Liu, Z., and Mao, W.L. (2015) Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nature Communications, 6, 6311.Google Scholar

  • Chaney, J., Santillán, J.D., Knittle, E., and Williams, Q. (2015) A high-pressure infrared and Raman spectroscopic study of BaCO3 the aragonite, trigonal and Pmmn structures. Physics and Chemistry of Minerals, 42(1), 83–93.Google Scholar

  • Dasgupta, R. (2013) Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Reviews in Mineralogy and Geochemistry, 75, 183–229.Google Scholar

  • Errandonea, D. (2013) High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt. Physical Review B, 87(5), 054108.Google Scholar

  • Errandonea, D., Somayazulu, M., Häusermann, D., and Mao, H.K. (2003) Melting of tantalum at high pressure determined by angle dispersive X‑ray diffraction in a double-sided laser-heated diamond-anvil cell. Journal of Physics: Condensed Matter, 15(45), 7635.Google Scholar

  • Fiquet, G., Guyot, F., Kunz, M., Matas, J., Andrault, D., and Hanfland, M. (2002) Structural refinements of magnesite at very high pressure. American Mineralogist, 87, 1261–1265.Google Scholar

  • Galiński, M., Lewandowski, A., and Stępniak, I. (2006) Ionic liquids as electrolytes. Electrochimica Acta, 51, 5567–5580.Google Scholar

  • Galwey, A.K., and Brown, M.E. (1999) Thermal Decomposition of Ionic Solids: Chemical properties and reactivities of ionic crystalline phases, vol. 86. Elsevier.Google Scholar

  • Ghiorso, M. S. (2004) An equation of state for silicate melts. I. Formulation of a general model. American Journal of Science, 304(8-9), 637–678.Google Scholar

  • Hayes, W., and Hutchings, M.T. (1989) Ionic Disorder in Crystals at High Temperatures with Emphasis on Fulorites. In Ionic Solids at High Temperatures, pp. 247–362.

  • Hazen, R.M., Downs, R.T., and Prewitt, C.T. (2000) Principles of comparative crystal chemistry. Reviews in Mineralogy and Geochemistry, 41, 1–33.Google Scholar

  • Herzberg, C., Asimow, P.D., Arndt, N., Niu, Y., Lesher, C.M., Fitton, J.G., Cheadle, M.J., and Saunders, A.D. (2007) Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems, 8(2).Google Scholar

  • Holl, C.M., Smyth, J.R., Laustsen, H.M.S., Jacobsen, S.D., and Downs, R.T. (2000) Compression of witherite to 8 GPa and the crystal structure of BaCO3 II. Physics and Chemistry of Minerals, 27(7), 467–473.Google Scholar

  • Hurt, S.M., and Wolf, A.S. (2018) Thermodynamic properties of CaCO3–SrCO3–BaCO3 liquids: a molecular dynamics study using new empirical atomic potentials for alkaline earth carbonates. Physics and Chemistry of Minerals, 1–16.

  • Irving, A.J., and Wyllie, P.J. (1973) Melting relationships in CaO-CO2 and MgO-CO2 to 36 kilobars with comments on CO2 in the mantle. Earth and Planetary Science Letters, 20(2), 220–225.Google Scholar

  • Isshiki, M., Irifune, T., Hirose, K., Ono, S., Ohishi, Y., Watanuki, T., Nishibori, E., Takata, M., and Sakata, M. (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature, 427, 60–63.Google Scholar

  • Judd, M.D., and Pope, M.I. (1972) Energy of activation for the decomposition of the alkaline-earth carbonates from thermogravimetric data. Journal of Thermal Analysis, 4(1), 31–38.Google Scholar

  • Katsura, T., and Ito, E. (1990) Melting and subsolidus phase relations in the MgSiO3-MgCO3 system at high pressures: implications to evolution of the Earth’s atmosphere. Earth and Planetary Science Letters, 99(1-2), 110–117.Google Scholar

  • Kavner, A., and Jeanloz, R. (1998) High-pressure melting curve of platinum. Journal of Applied Physics, 83(12), 7553–7559.Google Scholar

  • Kechin, V.V. (2001) Melting curve equations at high pressure. Physical Review B, 65(5), 052102.Google Scholar

  • Lander, J.J. (1949) Polymorphism and anion rotational disorder in the alkaline earth carbonates. The Journal of Chemical Physics, 17(10), 892–901.Google Scholar

  • Leinenweber, K.D., Tyburczy, J.A., Sharp, T.G., Soignard, E., Diedrich, T., Petuskey, W.B., Wang, Y., and Mosenfelder, J.L. (2012) Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). American Mineralogist, 97, 353–368.Google Scholar

  • Li, Z., and Li, J. (2015) Melting curve of NaCl to 20 GPa from electrical measurements of capacitive current. American Mineralogist, 100, 1892–1898.Google Scholar

  • Li, J., Hadidiacos, C., Mao, H.K., Fei, Y., and Hemley, R.J. (2003) Behavior of thermocouples under high pressure in a multi-anvil apparatus. High Pressure Research, 23(4), 389–401.Google Scholar

  • Li, Z., Li, J., Lange, R., Liu, J., and Militzer, B. (2017) Determination of calcium carbonate and sodium carbonate melting curves up to Earth’s transition zone pressures with implications for the deep carbon cycle. Earth and Planetary Science Letters, 457, 395–402.Google Scholar

  • Lin, C. C., and Liu, L.G. (1997) High-pressure Raman spectroscopic study of post-aragonite phase transition in witherite (BaCO3 European Journal of Mineralogy, 9(4), 785–792.Google Scholar

  • Litasov, K.D., Fei, Y., Ohtani, E., Kuribayashi, T., and Funakoshi, K. (2008) Thermal equation of state of magnesite to 32 GPa and 2073 K. Physics of the Earth and Planetary Interiors, 168(3), 191–203.Google Scholar

  • Liu, Q., and Lange, R.A. (2003) New density measurements on carbonate liquids and the partial molar volume of the CaCO3 component. Contributions to Mineralogy and Petrology, 146(3), 370–381.Google Scholar

  • Liu, Q., Tenner, T.J., and Lange, R.A. (2007) Do carbonate liquids become denser than silicate liquids at pressure? Constraints from the fusion curve of K2CO3 to 3.2 GPa. Contributions to Mineralogy and Petrology, 153(1), 55–66.Google Scholar

  • L’vov, B.V., and Novichikhin, A.V. (1997) Quantitative interpretation of the evaporation coefficients for the decomposition or sublimation of some substances in vacuo. Thermochimica Acta, 290(2), 239–251.Google Scholar

  • Meng, Y., Hrubiak, R., Rod, E., Boehler, R., and Shen, G. (2015) New developments in laser-heated diamond anvil cell with in situ synchrotron X‑ray diffraction at High Pressure Collaborative Access Team. Review of Scientific Instruments, 86(7), 072201.Google Scholar

  • Müller, J., Koch-Müller, M., Rhede, D., Wilke, F.D., and Wirth, R. (2017) Melting relations in the system CaCO3-MgCO3 at 6 GPa. American Mineralogist: Journal of Earth and Planetary Materials, 102(12), 2440–2449.Google Scholar

  • Nie, S., Liu, Y., Liu, Q., Wang, M., and Wang, H. (2017) Phase transitions and thermal expansion of BaCO3 and SrCO3 up to 1413 K. European Journal of Mineralogy, 29(3), 433–443.Google Scholar

  • Ono, S. (2007) New high-pressure phases in BaCO3 Physics and Chemistry of Minerals, 34(4), 215–221.Google Scholar

  • Ono, S., Brodholt, J.P., and Price, G.D. (2008) Phase transitions of BaCO3 at high pressures. Mineralogical Magazine, 72(2), 659–665.Google Scholar

  • Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of two-dimensional X‑ray diffraction data and data exploration. High Pressure Research, 35(3), 223–230.Google Scholar

  • Prewitt, C.T., and Downs, R.T. (1998) High-pressure crystal chemistry. Reviews in Mineralogy, 37, 284–318.Google Scholar

  • Putirka, K.D., Perfit, M., Ryerson, F.J., and Jackson, M.G. (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology, 241(3-4), 177–206.Google Scholar

  • Rapoport, E., and Pistorius, C.W. (1967) Orthorhombic-disordered rhombohedral transition in SrCO3 and BaCO3 to 40 kilobars. Journal of Geophysical Research, 72(24), 6353–6357.Google Scholar

  • Redfern, S.A. (2000) Structural variations in carbonates. Reviews in Mineralogy and Geochemistry, 41, 289–308.Google Scholar

  • Rumble, J.R. (Ed.). (2018) CRC Handbook of Chemistry and Physics, 98th ed. (internet ver. 2018). CRC Press, Taylor and Francis.Google Scholar

  • Seto, Y., Nishio-Hamane, D., Nagai, T., and Sata, N. (2010). Development of a software suite on X‑ray diffraction experiments. Review of High Pressure Science and Technology, 20(3).Google Scholar

  • Shatskiy, A.F., Litasov, K.D., and Palyanov, Y.N. (2015) Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data. Russian Geology and Geophysics, 56(1-2), 113–142.Google Scholar

  • Solopova, N.A., Dubrovinsky, L., Spivak, A.V., Litvin, Y.A., and Dubrovinskaia, N. (2015) Melting and decomposition of MgCO3 at pressures up to 84 GPa. Physics and Chemistry of Minerals, 42(1), 73–81.Google Scholar

  • Stern, K.H., and Weise, E.L. (Eds.). (1969) High temperature properties and decomposition of inorganic salts, Part II: Carbonates. National Standard Reference Data System (NSRDS-NBS 30). National Bureau of Standards, 12–13.

  • Stixrude, L., and Karki, B. (2005) Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science, 310, 297–299.Google Scholar

  • ThermoFisher Scientific (2010) Barium carbonate; MSDS No. 10645. Alfa Aesar Thermo Fisher Scientific Chemicals: Ward Hill, Massachusetts (accessed June 2, 2018). https://www.alfa.com/en/content/msds/USA/10645.pdf

  • Townsend, J.P., Chang, Y.Y., Lou, X., Merino, M., Kirklin, S.J., Doak, J.W., Issa, A., Wolverton, C., Tkachev, S.N., Dera, P., and Jacobsen, S.D. (2013) Stability and equation of state of post-aragonite BaCO3 Physics and Chemistry of Minerals, 40(5), 447–453.Google Scholar

  • Walker, D., Agee, C.B., and Zhang, Y. (1988) Fusion curve slope and crystal/liquid buoyancy. Journal of Geophysical Research: Solid Earth, 93(B1), 313–323.Google Scholar

  • Wang, M., Liu, Q., Nie, S., Li, B., Wu, Y., Gao, J., Wei, X., and Wu, X. (2015) High-pressure phase transitions and compressibilities of aragonite-structure carbonates: SrCO3 and BaCO3 Physics and Chemistry of Minerals, 42(6), 517–527.Google Scholar

  • Wu, T.C., Shen, A.H., Weathers, M.S., Bassett, W.A., and Chou, I.M. (1995) Anisotropic thermal expansion of calcite at high pressures: An in situ X‑ray diffraction study in a hydrothermal diamond-anvil cell. American Mineralogist, 80, 941–946.Google Scholar

  • Zaoui, A., and Shahrour, I. (2010) Molecular dynamics study of high-pressure polymorphs of BaCO3 Philosophical Magazine Letters, 90(9), 689–697.Google Scholar

About the article


Received: 2018-11-12

Accepted: 2019-02-11

Published Online: 2019-04-26

Published in Print: 2019-05-27


Citation Information: American Mineralogist, Volume 104, Issue 5, Pages 671–678, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6891.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in