Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 104, Issue 5


Discovery of asimowite, the Fe-analog of wadsleyite, in shock-melted silicate droplets of the Suizhou L6 and the Quebrada Chimborazo 001 CB3.0 chondrites

Luca Bindi / Frank E. Brenker / Fabrizio Nestola / Tamara E. Koch / David J. Prior / Kat Lilly / Alexander N. Krot
  • University of Hawaii at Mānoa, Hawaii Institute of Geophysics and Planetology, 1680 East-West Road, Honolulu, Hawaii 96822, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Bizzarro
  • StarPlan—Centre for Star and Planet Formation, Natural History Museum of Denmark University of Copenhagen, Øster Voldgade 5-7, DK- 1350, Copenhagen, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiande Xie
  • Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangzhou China
  • Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, Guangzhou China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-26 | DOI: https://doi.org/10.2138/am-2019-6960


We report the first natural occurrence and single-crystal X‑ray diffraction study of the Fe-analog of wadsleyite [a = 5.7485(4), b = 11.5761(9), c = 8.3630(7) Å, V = 556.52(7) Å3; space group Imma], spinelloid-structured Fe2SiO4, a missing phase among the predicted high-pressure polymorphs of ferroan olivine, with the composition(Fe1.102+Mg0.80Cr0.043+Mn0.022+Ca0.02Αl0.02Na0.01)Σ2.01(Si0.97Αl0.03)Σ1.00O4. The new mineral was approved by the International Mineralogical Association (No. 2018-102) and named asimowite in honor of Paul D. Asimow, the Eleanor and John R. McMillan Professor of Geology and Geochemistry at the California Institute of Technology. It was discovered in rare shock-melted silicate droplets embedded in Fe,Ni-metal in both the Suizhou L6 chondrite and the Quebrada Chimborazo (QC) 001 CB3.0 chondrite. Asimowite is rare, but the shock-melted silicate droplets are very frequent in both meteorites, and most of them contain Fe-rich wadsleyite (Fa30–45). Although the existence of such Fe-rich wadsleyite in shock veins may be due to the kinetic reasons, new theoretical and experimental studies of the stability of (Fe,Mg)2SiO4 at high temperature (>1800 K) and pressure are clearly needed. This may also have a significant impact on the temperature and chemical estimates of the mantle’s transition zone in Earth.

Keywords: Wadsleyite; iron; spinelloid; chondrite; meteorite; crystal structure; microprobe analysis; Earth’s transition zone

References cited

  • Agee, C.B., Li, J., Shannon, M.C., and Circone, S. (1995) Pressure-temperature phase diagram for the Allende meteorite. Journal of Geophysical Research, 100, 17,725–17,740.Google Scholar

  • Angel, R.J., and Nestola, F. (2016) Acentury of mineral structures: How well do we know them? American Mineralogist, 101, 1036–1045.Google Scholar

  • Bina, C.R., and Wood, B.J. (1987) The olivine-spinel transition: Experimental and thermodynamic constraints and implications for the nature of the 400-km discontinuity. Journal of Geophysical Research, 92, 4853–4866.Google Scholar

  • Bindi, L., Chen, M., and Xie, X. (2017) Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite. Scientific Reports, 7, 42674.Google Scholar

  • Bindi, L., Griffin, W.L., Panero, W.R., Sirotkina, E., Bobrov, A., and Irifune, T. (2018) Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. Scientific Reports, 8, 5457.Google Scholar

  • Binns, R.A., Davis, R.J., and Reed, S.J.B. (1969) Ringwoodite, natural (Mg,Fe)2SiO4 spinel in the Tenham meteorite. Nature, 221, 943–944.Google Scholar

  • Brenker, F.E., Koch, T.E., Prior, D.J., Lilly, K., Krot, A.N., Bizzarro, M., and Frost, D. (2018) Fe-rich ferropericlase in super deep diamonds and the stability of high FeO wadsleyite. Implications on the composition and temperature of the Earth’s transition zone. Goldschmidt Conference.

  • Bruker (2016) APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin.Google Scholar

  • Chen, M., and Xie, X.D. (2015) Shock-produced akimotoite in the Suizhou L6 chondrite. Science China Earth Sciences, 58, 876–880.Google Scholar

  • Chen, M., Xie, X.D., and El Goresy, A. (2004) A shock-produced (Mg,Fe)SiO3 glass in the Suizhou meteorite. Meteoritics & Planetary Science, 39, 1797–1808.Google Scholar

  • Collerson, K.D., Hapugoda, S., Kamber, B.S., and Williams, Q. (2000) Rocks from the mantle transition zone: Majorite-bearing xenoliths from Malaita, Southwest Pacific. Science, 288, 1215–1223.Google Scholar

  • Fei, Y., and Bertka, C.M. (1999) Phase transitions in the Earth’s mantle and mantle mineralogy. In Y. Fei, C.M. Bertha, and B.O. Mysen, Eds., Mantle Petrology: Field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd (pp. 189–207). Geochemical Society Publication No. 6.Google Scholar

  • Finger, L.W., Hazen, R., Zhang, J., and Ko, J. (1993) The effect of Fe on the crystal structure of wadsleyite β-(Mg1–xFex2SiO4 0.00 ≤ x ≤ 0.40. Physics and Chemistry of Minerals, 19, 361–368.Google Scholar

  • Gasparik, T. (2003) Phase Diagrams for Geoscientists. Springer-Verlag.Google Scholar

  • Hazen, R.M., Weinberger, M.B., Yang, H., and Prewitt, C.T. (2000) Comparative high-pressure crystal chemistry of wadsleyite, β-(Mg1–xFex2SiO4 with x = 0 and 0.25. American Mineralogist, 85, 770–777.Google Scholar

  • Irifune, T., and Ringwood, A.E. (1987) Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications. In M. Manghnani and Y. Syono, Eds., High Pressure Research in Mineral Physics, p. 231–242. American Geophysical Union, Washington, D.C.Google Scholar

  • Irifune, T., and Tsuchiya, T. (2007) Mineralogy of the Earth—phase transitions and mineralogy of the lower mantle. In G.D. Price, Ed., Treatise on Geophysics, 2, 33–62. Elsevier.Google Scholar

  • Kaminsky, F. (2012) Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth-Science Reviews, 110, 127–147.Google Scholar

  • Katsura, T., and Ito, E. (1989) The system Mg2SiO4-Fe2SiO4 at high pressure and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel. Journal of Geophysical Research, 94, 15663–15670.Google Scholar

  • Koch, T.E., Brenker, F.E., Krot, A.N., and Bizzarro, M. (2016) Silicate high pressure polymorphs in the CBa chondrite Quebrada Chimborazo 001. 79th Annual Meteoritical Society Meeting, no. 6287.

  • Koch, T.E., Brenker, F.E., Prior, D.J., Lilly, K., Krot, A.N., and Bizzarro, M. (2017) High iron wadsleyite in shocked melt droplets of CB chondrite QC 001.48th Lunar and Planetary Science Conference, abstract 1303.

  • Ma, C., Tschauner, O., Beckett, J.R., Liu, Y., Rossman, G.R., Sinogeikin, S.V., Smith, J.S., and Taylor, L.A. (2016) Ahrensite, γ-Fe2SiO4 a new shock-metamorphic mineral from the Tissint meteorite: implications for the Tissint shock event on Mars. Geochimica et Cosmochimica Acta, 184, 240–256.Google Scholar

  • Miyahara, M., El Goresy, A., Ohtani, E., Nagase, T., Nishijima, M., Vashaei, Z., Ferroir, T., Gillet, P., Dubrovinsky, L., and Simionovici, A. (2008) Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins. Proceedings of the National Academy of Sciences, 105, 8542–8547.Google Scholar

  • Moore, R.O., and Gurney, J.J. (1985) Pyroxene solid solution in garnets included in diamond. Nature, 318, 553–555.Google Scholar

  • Ono, S., Kikegawa, T., and Higo, Y. (2013) In situ observation of a phase transition in Fe2SiO4 at high pressure and high temperature. Physics and Chemistry of Minerals, 40, 811–816.Google Scholar

  • Price, R.D., Putnis, A., Agrell, S.O., and Smith, D.G.W. (1983) Wadsleyite, natural beta-(Mg,Fe)2SiO4 from the Peace River meteorite. Canadian Mineralogist, 21, 29–35.Google Scholar

  • Sharp, T.G., and de Carli, P.S. (2006) Shock effects in meteorites. In D.S. Lauretta and H.Y. McSween Jr., Eds., Meteorites and the Early Solar System II, 943, pp. 653–677. University of Arizona Press, Tucson.Google Scholar

  • Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.Google Scholar

  • Tomioka, N., and Fujino, K. (1999) Akimotoite, (Mg,Fe)SiO3 a new silicate mineral of theilmenite group in the Tenham chondrite. American Mineralogist, 84, 267–271.Google Scholar

  • Tomioka, N., Miyahara, M., and Ito, M. (2016) Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite. Science Advances, 2, e1501725.Google Scholar

  • Tschauner, O., Ma, C., Beckett, J.R., Prescher, C., Prakapenka, V.B., and Rossman, G.R. (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346, 1110–1112.Google Scholar

  • Walter, M.J., Kohn, S.C., Araujo, D., Bulanova, G.P., Smith, C.B., Gaillou, E., Wang, J., Steele, A., and Shirey, S.B. (2011) Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 334, 54–57.Google Scholar

  • Weisberg, M.K., and Kimura, M. (2010) Petrology and Raman spectroscopy of high pressure phases in the Gujba CB chondrite and the shock history of the CB parent body. Meteoritics & Planetary Science, 45, 873–884.Google Scholar

  • Wilson, A.J.C., Ed. (1992) International Tables for Crystallography, Volume C: Mathematical, physical and chemical tables. Kluwer.Google Scholar

  • Woodland, A.B., Angel, R.J., and Koch, M. (2012) Structural systematics of spinel and spinelloid phases in the system MFe2O4-M2SiO4 with M = Fe2+ and Mg. European Journal of Mineralogy, 24, 657–668.Google Scholar

  • Xie, X.D., Sun, Z. Y., and Chen, M. (2011) The distinct morphological and petrological features of shock melt veins in the Suizhou L6 chondrite. Meteoritics & Planetary Science, 46, 459–469.Google Scholar

About the article

Received: 2019-01-15

Accepted: 2019-02-13

Published Online: 2019-04-26

Published in Print: 2019-05-27

Citation Information: American Mineralogist, Volume 104, Issue 5, Pages 775–778, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6960.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in