Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 104, Issue 6

Issues

Compressibility of two Na-rich clinopyroxenes: A synchrotron single-crystal X-ray diffraction study

Ekaterina A. Matrosova
  • Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, 119991, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leyla Ismailova
  • Kolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3, Moscow, 143026, Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrey V. Bobrov
  • Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, 119991, Russia
  • Geological Faculty, Moscow State University, Moscow, 119991, Russia
  • Institute of Experimental Mineralogy of Russian Academy of Sciences, Chernogolovka, 142432, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena Bykova / Maxim Bykov
  • Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Konstantin Glazyrin / Luca Bindi
  • Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121 Florence, Italy
  • CNR—Istituto di Geoscienze e Georisorse, sezione di Firenze, Via La Pira 4, 50121 Florence, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey V. Ovsyannikov
  • Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey M. Aksenov
  • FSRC “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333, Russia
  • Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119334, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dmitry Yu. Pushcharovsky / Leonid Dubrovinsky
  • Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-27 | DOI: https://doi.org/10.2138/am-2019-6658

Abstract

Synchrotron-based high-pressure single-crystal X‑ray diffraction experiments were conducted on synthetic clinopyroxenes at room temperature to a maximum pressure of 40 GPa. We studied two crystals with different compositions. A Na-Ti-pyroxene with formula (Na0.86Mg0.14)(Mg0.57Ti0.43)Si2O6 synthesized at P = 7 GPa and T = 1700 °C, and a Na-pyroxene with composition (Na0.886Mg0.085Fe0.029) (Si0.442Mg0.390Fe0.168)Si2O6 synthesized at P = 15 GPa and T = 1500 °C. These phases were found to be monoclinic with the space group C2/c and exhibit KTo of 106.8(2), 121.8(4) GPa, respectively. Na-Tipyroxene is more compressible than Fe-bearing Na-Mg-Si-pyroxene, likely due to the fact that the FeO6 octahedron is significantly more rigid than MgO6 at high pressure. The formation of Na-rich pyroxenes in the deep mantle is related to crystallization of low-degree alkaline carbonate-silicate melts formed when the crust and mantle interact during the slab descent and its stagnation in the transition zone.

Keywords: Pyroxene; single-crystal X‑ray diffraction; high-pressure; high-temperature; phase transitions; equation of state; Earth’s mantle

References cited

  • Angel, R.J. (2000) Equations of state. Reviews in Mineralogy and Geochemistry, 41, 35–59.Google Scholar

  • Angel, R.J. (2011) Win_Strain program for Strain calculations. http://www.rossangel.com/text_strain.htm

  • Angel, R.J., Gasparik, T., Ross, N.L., Finger, L.W., Prewitt, C.T., and Hazen, R.M. (1988) A silica-rich sodium pyroxene phase with six-coordinated silicon. Nature, 335, 156–158.Google Scholar

  • Angel, R.J., Mazzucchelli, M.L., Alvaro, M., Nimis, P., and Nestola, F. (2014) Geobarometry from host-inclusion systems: the role of elastic relaxation. American Mineralogist, 99, 2146–2149.Google Scholar

  • Arlt, T., and Angel, R.J. (2000) Displacive phase transitions in C-centred clinopyroxenes: spodumene, LiScSi2O6 and ZnSiO3 Physics and Chemistry of Minerals, 27(10), 719–731.Google Scholar

  • Aulbach, S., Griffin, W.L., Pearson, N.J., O’Reilly, S.Y., Kivi, K., and Doyle, B.J. (2004) Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re–Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chemical Geology, 208(1-4), 61–88.Google Scholar

  • Bindi, L., Dymshits, A.M., Bobrov, A.V., Litasov, K.D., Shatskiy, A.F., Ohtani, E., and Litvin, Yu.A. (2011) Crystal chemistry of sodium in the Earth’s interior: The structure of Na2MgSi5O12 synthesized at 17.5 GPa and 1700 °C. American Mineralogist, 96, 447–450.Google Scholar

  • Bindi, L., Sirotkina, E.A., Bobrov, A.V., Walter, M.J., Pushcharovsky, D.Yu., and Irifune, T. (2017) Bridgmanite-like crystal structure in the novel Ti-rich phase synthesized at transition zone condition. American Mineralogist, 102, 227–230.Google Scholar

  • Bishop, F.C., Smith, J.V., and Dawson, J.B. (1978) Na, K, P and Ti in garnet, pyroxene and olivine from peridotite and eclogite xenoliths from African kimberlites. Lithos, 11, 155–173.Google Scholar

  • Bobrov, A.V., and Litvin, Yu.A. (2009) Peridotite–eclogite–carbonatite systems at 7.0–8.5 GPa: concentration barrier of diamond nucleation and syngenesis of its silicate and carbonate inclusions. Russian Geology and Geophysics, 50, 1221–1233.Google Scholar

  • Bobrov, A.V., Litvin, Yu.A., Bindi, L., and Dymshits, A.M. (2008) Phase relations and formation of sodium-rich majoritic garnet in the system Mg3Al2Si3O12– Na2MgSi5O12 at 7.0 and 8.5 GPa. Contributions to Mineralogy and Petrology, 156, 243–257.Google Scholar

  • Bridgman, P.W. (1923) The compressibility of thirty metals as a function of pressure and temperature. Proceedings of the American Academy of Arts and Sciences, 58, 165–242.Google Scholar

  • Cameron, M., and Papike, J.J. (1981) Structural and chemical variations in pyroxenes. American Mineralogist, 66, 1–50.Google Scholar

  • Cameron, M., Sueno, S., Prewitt, C.T., and Papike, J.J. (1973) High temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. American Mineralogist, 58, 594–618.Google Scholar

  • Clark, J.R., Appleman, D.E., and Papike, J.J. (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. MSA Special Paper, 2, 31–50.Google Scholar

  • Downs, R.T. (2003) Topology of the pyroxenes as a function of temperature, pressure and composition determined from the procrystal electron density. American Mineralogist, 88, 556–566.Google Scholar

  • Dymshits, A.M., Bobrov, A.V., Litasov, K.D., Shatskiy, A.F., Ohtani, E., and Litvin, Yu.A. (2010) Experimental study of the pyroxene-garnet phase transition in the Na2MgSi5O12 system at pressures of 13–20 GPa: First synthesis of sodium majorite. Doklady Earth Sciences, 434, 1263–1266.Google Scholar

  • Dymshits, A.M., Bobrov, A.V., Bindi, L., Litvin, Y.A., Litasov, K.D., Shatskiy, A.F., and Ohtani, E. (2013) Na-bearing majoritic garnet in the Na2MgSi5O12– Mg3Al2Si3O12 join at 11–20 GPa: Phase relations, structural peculiarities and solid solutions. Geochimica et Cosmochimica Acta, 105, 1–13.Google Scholar

  • Dymshits, A., Sharygin, I., Litasov, K., Shatskiy, A., Gavryushkin, P., Ohtani, E., Suzuki, A., and Funakoshi, K. (2015) In situ observation of the pyroxenemajorite transition in Na2MgSi5O12 using synchrotron radiation and Raman spectroscopy of Na-majorite. American Mineralogist, 100, 378–384.Google Scholar

  • Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104, 9182–9186.Google Scholar

  • Finger, L.W., and Hazen, R.M. (2000) Systematics of high-pressure silicate structures. Reviews in Mineralogy and Geochemistry, 41, 123–155.Google Scholar

  • Frost, D.J., Poe, B.T., Trønnes, R.G., Liebske, C., Duba, A., and Rubie, D.C. (2004) A new large-volume multianvil system. Physics of the Earth and Planetary Interiors, 143-144, 507–514.Google Scholar

  • Gasparik, T. (1988) The synthesis of a new pyroxene-NaMg0.5Si2.5O6 and garnet near the diopside–jadeite join. Eos Transactions, 69, 500.Google Scholar

  • Gasparik, T. (1989) Transformation of enstatite–diopside–jadeite pyroxenes to garnet. Contributions to Mineralogy and Petrology, 102(4), 389–405.Google Scholar

  • Gatta, G.D., Boffa Ballaran, T., and Iezzi, G. (2005) High-pressure X‑ray and Raman study of a ferrian magnesian spodumene. Physics and Chemistry of Minerals, 32(2), 132–139.Google Scholar

  • Hazen, R.M. (1993) Comparative compressibilities of silicate spinels: Anomalous behavior of (Mg,Fe)2SiO4 Science, 259, 206–209.Google Scholar

  • Hazen, R.M., and Finger, L.W. (1977) Crystal structure and compositional variation of Angra dos Reis fassaite. Earth and Planetary Science Letters, 35(2), 357–362.Google Scholar

  • Levien, L., and Prewitt, C.T. (1981) High-pressure structural study of diopside. American Mineralogist, 66, 315–323.Google Scholar

  • McCarthy, A.C., Downs, R.T., and Thompson, R.M. (2008) Compressibility trends of the clinopyroxenes, and in situ high-pressure single-crystal X‑ray diffraction study of jadeite. American Mineralogist, 93, 198–209.Google Scholar

  • Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272–1276.Google Scholar

  • Nestola, F., Boffa Ballaran, T., Liebske, C., Bruno, M., and Tribaudino, M. (2006) High-pressure behaviour along the jadeite NaAlSi2O6–aegirine NaFeSi2O6 solid solution up to 10 GPa. Physics and Chemistry of Minerals, 33(6), 417–425.Google Scholar

  • Ninomiya, E., Isobe, M., Ueda, Y., Nishi, M., Ohoyama, K., Sawa, H., and Ohama, T. (2003) Observation of lattice dimerization in spin singlet low temperature-phase of NaTiSi2O6 Physica B, 329, 884–885.Google Scholar

  • Ohashi, H. (2003) Crystal Structures of (Na,Ca)(Ti,Mg)Si2O6 clinopyroxenes: X-ray study on Si-O bonding. Maruzen Publishing Service Center, Tokyo.Google Scholar

  • Ohashi, H., Fujita, T., and Osawa, T. (1982) The crystal structure of NaTiSi2O6 pyroxene. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 77, 305–309.Google Scholar

  • Petricek, V., Dusek, M., and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie-Crystalline Materials, 229, 345.Google Scholar

  • Prewitt, C.T., and Burnham, C.W. (1966) The crystal structure of jadeite, NaAlSi2O6 American Mineralogist, 51, 956–975.Google Scholar

  • Prewitt, C.T., Shannon, R.D., and White, W.B. (1972) Synthesis of a pyroxene containing trivalent titanium. Contributions to Mineralogy and Petrology, 35, 77–82.Google Scholar

  • Pushcharovsky, D.Y. (2004) Mineral transformation processes in deep geospheres. Moscow University Geology Bulletin, 59(2), 1–11.Google Scholar

  • Redhammer, G.J., Ohashi, H., and Roth, G. (2003) Single-crystal structure refinement of NaTiSi2O6 clinopyroxene at low temperatures (298 < T < 100 K). Acta Crystallographica, B59(6), 730–746.Google Scholar

  • Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567–570.Google Scholar

  • Rudnick, R.L., Gao, S., Ling, W.L., Liu, Y.S., and McDonough, W.F. (2004) Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77(1), 609–637.Google Scholar

  • Sirotkina, E.A., Bobrov, A.V., Spivak, A.V., Bindi, L., and Pushcharovsky, D.Y. (2016) X‑ray single-crystal and Raman study of (Na0.86Mg0.14(Mg0.57Ti0.43 Si2O6 a new pyroxene synthesized at 7 GPa and 1700 °C. Physics and Chemistry of Minerals, 43(7), 731–738.Google Scholar

  • Sours-Page, R., Johnson, K.T., Nielsen, R.L., and Karsten, J.L. (1999) Local and regional variation of MORB parent magmas: evidence from melt inclusions from the Endeavour Segment of the Juan de Fuca Ridge. Contributions to Mineralogy and Petrology, 134(4), 342–363.Google Scholar

  • Stixrude, L., and Lithgow-Bertelloni, C. (2005) Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. Journal of Geophysical Research: Solid Earth, 110, B03204.Google Scholar

  • Thompson, R.M., and Downs, R.T. (2004) Model pyroxenes II: Structural variation as a function of tetrahedral rotation. American Mineralogist, 89, 614–628.Google Scholar

  • Thompson, R.M., and Downs, R.T. (2008) The crystal structure of diopside at pressure to 10 GPa. American Mineralogist, 93, 177–186.Google Scholar

  • Thompson, R.M., Downs, R.T., and Redhammer, G.J. (2005) Model pyroxenes III: Volume of C2/c pyroxenes at mantle P T and x American Mineralogist, 90, 1840–1851.Google Scholar

  • Thomson, A.R., Walter, M. J., Kohn, S.C., and Brooker, R.A. (2016) Slab melting as a barrier to deep carbon subduction. Nature, 529, 76–79.Google Scholar

  • Tribaudino, M., Prencipe, M., Nestola, F., and Hanfland, M. (2001) AP21/c-C2/c high-pressure phase transition in Ca0.5Mg1.5Si2O6 clinopyroxene. American Mineralogist, 86, 807–813.Google Scholar

  • Ullrich, A., Miletich, R., Balič-Žunić, T., Olsen, L., Nestola, F., Wildner, M., and Ohashi, H. (2010) (Na,Ca)(Ti3+Mg)Si2O6-clinopyroxenes at high pressure: Influence of cation substitution on elastic behavior and phase transition. Physics and Chemistry of Minerals, 37, 25–43.Google Scholar

  • Walter, M.J., Bulanova, G.P., Armstrong, L.S., Keshav, S., Blundy, J.D., Gudfinnsson, G., and Gobbo, L. (2008) Primary carbonatite melt from deeply subducted oceanic crust. Nature, 454, 622–625.Google Scholar

  • Wang, W., and Gasparik, T. (2000) Evidence for a deep-mantle origin of a NaPx-En inclusion in diamond. International Geology Review, 42(11), 1000–1006.Google Scholar

  • Wang, W., and Sueno, S. (1996) Discovery of a NaPx-En inclusion in diamond: Possible transition zone origin. Mineralogical Journal, 18(1), 9–16.Google Scholar

  • Xu, J., Zhang, D., Fan, D., Downs, R.T., Hu, Y., and Dera, P.K. (2017) Isosymmetric pressure-induced bonding increase changes compression behavior of clinopyroxenes across jadeite-aegirine solid solution in subduction zones. Journal of Geophysical Research: Solid Earth, 122(1), 142–157.Google Scholar

  • Yang, H., and Konzett, J. (2005) Crystal chemistry of a high-pressure C2/c clinopyroxene with six-coordinated silicon. American Mineralogist, 90, 1223–1226.Google Scholar

  • Yang, H., and Prewitt, C.T. (2000) Chain and layer silicates at high temperatures and pressures. Reviews in Mineralogy and Geochemistry, 41, 211–255.Google Scholar

  • Yang, H., Konzett, J., Frost, D.J., and Downs, R.T. (2009) X‑ray diffraction and Raman spectroscopic study of clinopyroxenes with six-coordinated Si in the Na (Mg0.5Si0.5Si2O6-NaAlSi2O6 system. American Mineralogist, 94, 942–949.Google Scholar

  • Zhang, L., Ahsbahs, H., Hafner, S.S., and Kutoglu, A. (1997) Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa. American Mineralogist, 82, 245–258.Google Scholar

  • Zhao, Y., Von Dreele, R.B., Shankland, T.J., Weidner, D.J., Zhang, J.Z., Wang, Y.B., and Gasparik, T. (1997) Thermoelastic equation of state of jadeite NaAlSi2O6 an energy-dispersive Reitveld refinement study of low symmetry and multiple phases diffraction. Geophysical Research Letters, 24, 5–8.Google Scholar

About the article

Received: 2018-05-27

Accepted: 2019-02-18

Published Online: 2019-05-27

Published in Print: 2019-06-26


FundingWe acknowledge the ESRF and DESY for the provision of synchrotron radiation facilities. This study was supported by the Russian Science Foundation (project no. 17-17-01169 to A.B., E.M., and L.I.). The structural refinement of Na-Ti pyroxene was supported by the Foundation of the President of the Russian Federation (grant no. MK-1277.2017.5 to E.M.). The comparison of the structures of synthesized pyroxenes with the phases available from literature—by the Russian Foundation of Basic Research (grant no. 18-05-00332 to D.P.).


Citation Information: American Mineralogist, Volume 104, Issue 6, Pages 905–913, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6658.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in