Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 104, Issue 6

Issues

Estimation of radiation damage in titanites using Raman spectroscopy

Beatrix Muriel Heller
  • Geoscience Center, Sedimentology and Environmental Geology, University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nils Keno Lünsdorf
  • Geoscience Center, Sedimentology and Environmental Geology, University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ István Dunkl
  • Geoscience Center, Sedimentology and Environmental Geology, University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ferenc Molnár / Hilmar von Eynatten
  • Geoscience Center, Sedimentology and Environmental Geology, University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-27 | DOI: https://doi.org/10.2138/am-2019-6681

Abstract

Recent studies have shown that α-damage in titanite influences He diffusivity and thus the closure temperature of the (U-Th)/He system in titanite. We compare different methods for measuring the α‑dose in titanite by Raman spectroscopy. Raman spectra of randomly oriented titanite fragments from the Archean Karelian domain in eastern Finland along with some well-studied young titanites and U-Pb standard reference materials were analyzed and related to the concentration of α-emitting elements (U and Th) that generated damage in the respective grains. Automated curve-fitting was performed by the IFORS software and different curve-fitting protocols were tested and compared.

The Raman bands at 424 and 465 cm-1 show a good correlation of full-width at half maximum (FWHM) and position with the α-dose. However, these bands are not always present because titanite is highly anisotropic implying that Raman spectra are sensitive to orientation. The intensity-weighted mean FWHM (iw-FWHM) of all Raman bands of a spectrum proves to be the most robust measure of the α-dose. A simplified fitting approach considering 15 peaks is sufficient to describe the accumulated α-dose. For α-doses below 5 × 1016α/g the iw-FWHM is independent of α-dose and ranges from 25 to 50 cm-1. Above this value the iw-FWHM increases linearly with increasing α-dose up to 3 × 1018α/g. The linear correlation can be described as iw-FWHM[cm-1] ≈ 39(±1.2)[cm-1] + 3.84(+0.61,–0.26) × 10-17[cm-1/(α/g)] × α-dose[α/g]. The approach provides a pre-selection method to optimize the range of α-doses of titanite crystals to be dated by (U-Th)/He thermochronology.

Keywords: Titanite; (U-Th)/He; metamictization; radiation damage; α-dose; Raman spectroscopy; thermochronology

References cited

  • Ault, A.K., Guenthner, W.R., Moser, A.C., Miller, G.H., and Refsnider, K.A. (2018) Zircon grain selection reveals (de)coupled metamictization, radiation damage, and He diffusivity. Chemical Geology, 490, 1–12.Google Scholar

  • Baughman, J.S., Flowers, R.M., Metcalf, J.R., and Dhansay, T. (2017) Influence of radiation damage on titanite He diffusion kinetics. Geochimica et Cosmochimica Acta, 205, 50–64.Google Scholar

  • Beirau, T., Bismayer, U., Mihailova, B., Paulmann, C., and Groat, L.A. (2010) Structural phenomena of metamict titanite: a synchrotron, X‑ray diffraction and vibrational spectroscopic study. Phase Transitions, 83, 694–702.Google Scholar

  • Beirau, T., Mihailova, B., Matveeva, G., Kolb, U., Malcherek, T., Groat, L.A., and Bismayer, U. (2012) Structural anisotropy and annealing-induced nanoscale atomic rearrangements in metamict titanite. American Mineralogist, 97, 1354–1365.Google Scholar

  • Beirau, T., Mihailova, B., Malcherek, T., Paulmann, C., Bismayer, U., and Groat, L.A. (2014) Temperatur-induced P21/c to C2/c phase transition in partially amorphous (metamict) titanite revealed by Raman sprectroscopy. Canadian Mineralogist, 52, 91–100.Google Scholar

  • Beirau, T., Nix, W.D., Ewing, R.C., Schneider, G.A., Groat, L.A., and Bismayer, U. (2016) Mechanical properties of natural radiation-damaged titanite and temperatureinduced structural reorganization: A nanoindentation and Raman spectroscopic study. American Mineralogist, 101, 399–406.Google Scholar

  • Bingen, B., Andersson, J., Söderlund, U., and Möller, C. (2008) The Mesoproteroic in the Nordic countries. Episodes, 31, 29–34.Google Scholar

  • Bismayer, U., Paulmann, C., Groat, L., and Zhang, M. (2010) Local phenomena in metamict titanite. Acta Physica Polonica A, 117, 74–77.Google Scholar

  • Butler, R.F., Gehrels, G.E., Baldwin, S.L., and Davidson, C. (2002) Paleomagnetism and geochronology of the Ecstall pluton in the Coast Mountains of British Columbia: Evidence for local deformation rather than large-scale transport. Journal of Geophysical Research, 107, EPM 3-1–EPM 3-13.Google Scholar

  • Cherniak, D.J., and Watson, E.B. (2011) Helium diffusion in rutile and titanite, and consideration of the origin and implications of diffusional anisotropy. Chemical Geology, 288, 149–161.Google Scholar

  • Coyle, D.A., and Wagner, G.A. (1998) Positioning the titanite fission-track partial annealing zone. Chemical Geology, 149, 117–125.Google Scholar

  • Farges, F. (1997) Fivefold-coordinated Ti4+ in metamict zirconolite and titanite: A new occurrence shown by Ti K-edge XANES spectroscopy. American Mineralogist, 82, 44–50.Google Scholar

  • Farley, K.A. (2002) (U-Th)/He dating: Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47, 819–844.Google Scholar

  • Farley, K.A., Wolf, R.A., and Silver, L.T. (1996) The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta, 60, 4223–4229.Google Scholar

  • Fitzgerald, P.G., and Gleadow, A.J.W. (1988) Fission-track geochronology, tectonics and structure of the Transantarctic Mountains in northern Victoria Land, Antarctica. Chemical Geology, 73, 1497–1502.Google Scholar

  • Flowers, R.M. (2009) Exploiting radiation damage control on apatite (U-Th)/He dates in cratonic regions. Earth and Planetary Science Letters, 277, 148–155.Google Scholar

  • Flowers, R.M., Ketcham, R.A., Shuster, D.L., and Farley, K.A. (2009) Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73, 2347–2365.Google Scholar

  • Gaal, G. (1980) Geological setting and intrusion tectonics of the Kotalahti nickelcopper deposit, Finland. Bulletin of the Geological Society of Finland, 52, 101–128.Google Scholar

  • Gautheron, C., Tassan-Got, L., Barbarand, J., and Pagel, M. (2009) Effect of alpha-damage annealing on apatite (U-Th)/He thermochronology. Chemical Geology, 266, 166–179.Google Scholar

  • Gleadow, A.J.W. (1978) Anisotropic and variable track etching characteristics in natural sphenes. Nuclear Track Detection, 2, 105–117.Google Scholar

  • Gleadow, A.J.W., and Brooks, C. (1979) Fission-track dating, thermal histories and tectonics of igneous intrusions in east Greenland. Contributions to Mineralogy and Petrology, 71, 45–60.Google Scholar

  • Gleadow, A.J.W., and Lovering, J.F. (1978) Thermal history of granitic rocks from western Victoria: A fission-track dating study. Journal of the Geological Society of Australia, 25, 323–340.Google Scholar

  • Groat, L.A., Carter, R.T., Hawthorne, F.C., and Ercit, T.S. (1985) Tantalian niobian titanite from the Irgon claim, southeastern Manitoba. Canadian Mineralogist, 23, 569–571.Google Scholar

  • Guenthner, W.R., Reiners, P.W., Ketcham, R.A., Nasdala, L., and Giester, G. (2013) Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U-TH)/He thermochronology. American Journal of Science, 313, 145–198.Google Scholar

  • Guenthner, W.R., Reiners, P.W., Drake, H., and Tillberg, M. (2017) Zircon, titanite, and apatite (U-Th)/He ages and age-eU correlations from the Fennoscandian Shield, southern Sweden. Tectonics, 36, 1254–1274.Google Scholar

  • Halla, J. (2002) Origin and Paleoproterozoic reactivation of Neoarchean high-K granitoid rocks in eastern Finland. Annales Academiae Scientiarum Fennicae, Geologica, Geographica, 163.Google Scholar

  • Halla, J., and Heilimo, E. (2009) Deformation-induced Pb isotope exchange between K-feldspar and whole rock in Neoarchean granitoids: Implications for assessing Proterozoic imprints. Chemical Geology, 265, 303–312.Google Scholar

  • Harangi, S., Lukács, R., Schmitt, A.K., Dunkl, I., Molnár, K., Kiss, B., Seghedi, I., Novothny, Á., and Molnár, M. (2015) Constraints on the timing of Quaternary volcanism and duration of magma residence at Ciomadul volcano, east-central Europe, from combined U-Th/He and U-Th zircon geochronology. Journal of Volcanology and Geothermal Research, 301, 66–80.Google Scholar

  • Harrison, T.M., Armstrong, R.L., Naeser, C.W., and Harakal, J.E. (1979) Geochronology and thermal history of the Coastal Plutonic Complex, near Prince Rupert, British Columbia. Canadian Journal of Earth Sciences, 16, 400–410.Google Scholar

  • Hawthorne, F.C., Groat, L.A., Raudsepp, M., Ball, N.A., Kimata, M., Spike, F.D., Gaba, R., Halden, N.M., Lumpkin, G.R., Ewing, R.C., et al. (1991) Alpha-decay damage in titanite. American Mineralogist, 76, 370–396.Google Scholar

  • Heberer, B., Reverman, R.L., Fellin, M.G., Neubauer, F., Dunkl, I., Zattin, M., Seward, D., Genser, J., and Brack, P. (2017) Postcollisional cooling history of the Eastern and Southern Alps and its linkage to Adria indentation. International Journal of Earth Sciences, 106, 1557–1580.Google Scholar

  • Heilimo, E., Halla, J., and Huhma, H. (2011) Single-grain zircon U-Pb age constraints of the western and eastern sanukitoid zones in the Finnish part of the Karelian Province. Lithos, 121, 87–99.Google Scholar

  • Heyns, A.M., and Harden, P.M. (2013) The temperature dependence of the Raman spectra of chromium-doped titanite (CaTiOSiO4 Journal of Raman Spectroscopy, 44, 1615–1624.Google Scholar

  • Heyns, A.M., Harden, P.M., and Prinsloo, L.C. (2000) Resonance Raman study of the high-pressure phase transition in chromium-doped titanite, CaTiOSiO4 Journal of Raman Spectroscopy, 31, 837–841.Google Scholar

  • Higgins, J.B., and Ribbe, P.H. (1976) Crystal-chemistry and space groups of natural and synthetic titanites. American Mineralogist, 61, 878–888.Google Scholar

  • Hölttä, P., Lehtonen, E., Lahaye, Y., and Sorjonen-Ward, P. (2016) Metamorphic evolution of the Ilomantsi greenstone belt in the Archaean Karelia Province, eastern Finland. In J. Halla, M.J. Whitehouse, T. Ahmad, and Z. Bagai, Eds., Crust-mantle interactions and granitoid diversification: Insights from Archean Cratons, vol. 449. Special Publications. Geological Society London, London.Google Scholar

  • Hueck, M., Dunkl, I., Heller, B., Basei, M.A.S., and Siegesmund, S. (2018) (U-Th)/He thermochronology and zircon radiation damage in the South American passive margin: thermal overprint of the Paraná LIP? Tectonics, 37, 1–18.Google Scholar

  • Huhma, H., Kontinen, A., Mikkola, P., Halkoaho, T., Hokkanen, T., Hölttä, P., Juopperi, H., Konnunaho, J., Luukkonen, E., Mutanen, T., et al. (2012a) Nd isotopic evidence for Archaean crustal growth in Finland. Special Paper of the Geological Survey of Finland, 54, 176–213.Google Scholar

  • Huhma, H., Mänttäri, I., Peltonen, P., Kontinen, A., Halkoaho, T., Hanski, E., Hokkanen, T., Hölttä, P., Juopperi, H., Konnunaho, J., et al. (2012b) The age of the Archean greenstone belts in Finland. In P. Hölttä, Eds., The Archean of the Karelia Province in Finland, Special Paper 54, pp. 73–174. Geological Survey of Finland.

  • Irmer, G. (1985) Zum Einfluß der Apparatefunktion auf die Bestimmung von Streuquerschnitten und Lebensdauern aus optischen Phononenspektren. Experimentelle Technik der Physik, 33, 501–506.Google Scholar

  • Johnson, J.E., Flowers, R.M., Baird, G.B., and Mahan, K.H. (2017) “Inverted” zircon and apatite (U-Th)/He dates from the Front Range, Colorado: High damage zircon as a low-temperature (<50°C) thermochronometer. Earth and Planetary Science Letters, 466, 80–90.Google Scholar

  • Kähkönen, Y. (2005) Svecofennian supracrustal rocks. In M. Lehtinen, P.A. Nurmi and O.T. Rämö, Eds., Precambrian Geology of Finland—Key to the evolution of the Fennoscandian shield. Developments in Precambrian Geology 14, chapter 8, p. 343–405. Elsevier.Google Scholar

  • Käpyaho, A., Molnár, F., Sorjonen-Ward, P., Mänttäri, I., Sakellaris, G., and Whitehouse, M. (2016) New U-Pb age constraints for the timing of gold mineralization at the Pampalo gold deposit, Archaean Hattu schist belt, eastern Finland, obtained from hydrothermally altered and recrystallised zircon. Precambrian Research, 289, 48–61.Google Scholar

  • Klemme, S., Prowatke, S., Münker, C., Magee, C., Lahaye, Y., Zack, T., Kasemann, S., Cabato, E., and Kaeser, B. (2008) Synthesis and preliminary characterization of new silicate, phosphate and titanite reference glasses. Geostandards and Geoanalytical Research, 32, 39–54.Google Scholar

  • Kohn, B.P., Lorencak, M., Gleadow, A.J.W., Kohlmann, F., Raza, A., Osadetz, K.G., and Sorjonen-Ward, P. (2009) A reappraisal of low-temperature thermochronology of the eastern Fennoscandia Shield and radiation-enhanced apatite fission-track annealing. Geological Society, London, Special Publications, 324, 193–216.Google Scholar

  • Kohn, B.P., Wagner, M.E., Lutz, T.M., and Organist, G. (1993) Anomalous Mesozoic thermal regime, central Appalachian Piedmont: evidence from sphene and zircon fission-track dating. Journal of Geology, 101, 779–794.Google Scholar

  • Kohonen, J. (2005) Sedimentary rocks, diabases, and late cratonic evolution. In M. Lehtinen, P.A. Nurmi, and O.T. Rämö, Eds., Precambrian geology of Finland—Key to the evolution of the Fennoscandian shield. Developments in Precambrian Geology 14, chapter 13, p. 563–603. Elsevier.Google Scholar

  • Koistinen, T., Stephens, M.B., Bogatchev, V., Nordgulen, Ø., Wennerstrøm, M., and Korhonen, J. (2001) Geological map of the Fennoscandian Shield, scale 1:2 million. Geological Surveys of Finland, Norway and Sweden and North-West Department of Natural Resources of Russia.

  • Kontinen, A., Paavola, J., and Lukkarinen, H. (1992) K-Ar ages of hornblende and biotite from late Archaean rocks of eastern Finland—interpretation and discussion of tectonic implications. Geological Survey of Finland, Bulletin, 365, 1–31.Google Scholar

  • Kraml, M., Pik, R., Rahn, M., Selbekk, R., Carignan, J., and Keller, J. (2006) A new multi-mineral age reference material for 40Ar/39Ar, (U-Th)/He and fission track dating methods: The Limberg t3 Tuff. Geostandards and Geoanalytical Research, 30, 73–86.Google Scholar

  • Lahtinen, R., Korja, A., and Nironen, M. (2005) Paleoproterozoic tectonic evolution. In M. Lehtinen, P.A. Nurmi, and O.T. Rämö, Eds., Precambrian geology of Finland—Key to the evolution of the Fennoscandian shield. Developments in Precambrian Geology 14, chapter 11, p. 481–531. Elsevier.Google Scholar

  • Larson, S.Å., Tullborg, E.L., Cederbom, C., and Stiberg, J.P. (1999) Sveconorwegian and Caledonian foreland basins in the Baltic Shield revealed by fission-track thermochronology. Terra Nova, 11, 210–215.Google Scholar

  • Lehtovaara, J. (1976) Apatite fission track dating of Finnish Precambrian intrusives. Annales Academiae Scientiarum Fennicae, 117, 1–94.Google Scholar

  • Lenz, C., Nasdala, L., Talla, D., Hauzenberger, C., Seitz, R., and Kolitsch, U. (2015) Laser-induced REE3+ photoluminescence of selected accessory minerals—An “advantageous artefact” in Raman spectroscopy. Chemical Geology, 415, 1–16.Google Scholar

  • Lorencak, M. (2003) Low temperature thermochronology of the Canadian and Fennoscandian Shields, 300 p. Ph.D. thesis, University of Melbourne.Google Scholar

  • Lucassen, F., Franz, G., Dulski, P., Romer, R.L., and Rhede, D. (2011) Element and Sr isotope signatures of titanite as indicator of variable fluid composition in hydrated eclogite. Lithos, 121, 12–24.Google Scholar

  • Lumpkin, G.R. (2006) Ceramic waste forms for actinides. Elements, 2, 365–372.Google Scholar

  • Lumpkin, G.R., Eby, R.K., and Ewing, R.C. (1991) Alpha-recoil damage in titanite (CaTiSiO5 direct observation and annealing study using high resolution transmission electron microscopy. Journal of Materials Research, 6, 560–564.Google Scholar

  • Lünsdorf, N.K., and Lünsdorf, J.O. (2016) Evaluating Raman spectra of carbonaceous matter by automated, iterative curve-fitting. International Journal of Coal Geology, 160–161, 51–62.Google Scholar

  • Meyer, H.W., Zhang, M., Bismayer, U., Salje, E.K.H., Schmidt, C., Kek, S., Morgenroth, W., and Bleser, T. (1996) Phase transformation of natural titanite: An infrared, Raman spectroscopic, optical birefringence and X‑ray diffraction study. Phase Transitions, 59, 39–60.Google Scholar

  • Mikkola, P., Heilimo, E., Paavola, J., Halkoaho, T., Äikäs, O., and Huhma, H. (2013) Lentuan kompleksin eteläosan kallioperä. Summary: Bedrock of the southern part of the Lentua complex. Tutkimusraportti—Report of Investigation, 202, 96.Google Scholar

  • Molnár, K. (2018) Eruption chronology of the Ciomadul volcanic complex based on zircon (U-Th)/He geochronology. Unpublished Ph.D. thesis, Eötvös University, Budapest.Google Scholar

  • Molnár, F., O’Brien, H., Lahaye, Y., Kapyaho, A., and Sakellaris, G. (2016) Signatures of Multiple Mineralization Processes in the Archean Orogenic Gold Deposit of the Pampalo Mine, Hattu Schist Belt, Eastern Finland. Economic Geology, 111, 1659–1703.Google Scholar

  • Murrell, G.R. (2003) The long-term thermal evolution of central Fennoscandia, revealed by low-temperature thermochronometry, 219 p. Ph.D. thesis, Vrije Universiteit Amsterdam.Google Scholar

  • Murrell, G.R., and Andriessen, P.A.M. (2004) Unravelling a long-term multi-event thermal record in the cratonic interior of southern Finland through apatite fission track thermochronology. Physics and Chemistry of the Earth, 29, 695–706.Google Scholar

  • Naeser, C.W., and Forbes, R.B. (1976) Variation of fission track ages with depth in two deep drill holes. Eos, Transactions American Geophysical Union, 57, 353.Google Scholar

  • Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., and Kober, B. (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contributions to Mineralogy and Petrology, 141, 125–144.Google Scholar

  • Nasdala, L., Reiners, P.W., Garver, J.I., Kennedy, A.K., Stern, R.A., Balan, E., and Wirth, R. (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. American Mineralogist, 89, 219–231.Google Scholar

  • Nurmi, P.A., Sorjonen-Ward, P., and Damstén, M. (1993) Geological setting, characteristics and exploration history of the mesothermal gold ocurrences in the late Archean Hattu schist belt, Ilomantsi, eastern Finland. In P. Nurmi and P. Sorjonen-Ward, Eds., Geological Development, Gold Mineralization and Exploration Methods in the Late Archean Hattu Schist Belt, Ilomantsi, Eastern Finland, Special Paper 17, Geological Survey of Finland, Espoo, pp. 193–231.Google Scholar

  • O’Brien, H., Huhma, H., and Sorjonen-Ward, P. (1993) Petrogenesis of the Late Archean Hattu schist belt, Ilomantsi, eastern Finland: Geochemistry and Sr, Nd isotopic composition. In P.A. Nurmi and P. Sorjonen-Ward, Eds., Geological Development, Gold Mineralization and Exploration Methods in the Late Archean Hattu Schist Belt, Ilomantsi, Eastern Finland, Special Paper 17, Geological Survey of Finland, Espoo, pp. 147–184.Google Scholar

  • Orme, D.A., Guenthner, W.R., Laskowski, A.K., and Reiners, P.W. (2016) Longterm tectonothermal history of Laramide basement from zircon-He age-eU correlations. Earth and Planetary Science Letters, 453, 119–130.Google Scholar

  • Palenik, C.S., Nasdala, L., and Ewing, R.C. (2003) Radiation damage in zircon. American Mineralogist, 88, 770–781.Google Scholar

  • Pidgeon, R.T. (2014) Zircon radiation damage ages. Chemical Geology, 367, 13–22.Google Scholar

  • Puura, V., Amantov, A., Tikhomirov, S., and Laitakari, I. (1996) Latest events affecting the Precambrian basement, Gulf of Finland and surrounding areas. Special Paper of the Geological Survey of Finland, 21, 115–125.Google Scholar

  • Reiners, P.W. (2005) Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58, 151–179.Google Scholar

  • Reiners, P.W., and Farley, K.A. (1999) Helium diffusion and (U-Th)/He thermochronometry of titanite. Geochimica et Cosmochimica Acta, 63, 3845–3859.Google Scholar

  • Salje, E.K.H., Schmidt, C., and Bismayer, U. (1993) Structural phase transition in titanite, CaTiSiO5 A ramanspectroscopic study. Physics and Chemistry of Minerals, 19, 502–506.Google Scholar

  • Salje, E.K., Safarik, D.J., Lashley, J.C., Groat, L.A., and Bismayer, U. (2011) Elastic softening of metamict titanite CaTiSiO5 Radiation damage and annealing. American Mineralogist, 96, 1254–1261.Google Scholar

  • Salje, E.K.H., Taylor, R.D., Safarik, D.J., Lashley, J.C., Groat, L.A., Bismayer, U., Evans, J.R., and Friedman, R. (2012) Evidence for direct impact damage in metamict titanite CaTiSiO5 Journal of Physics: Condensed Matter, 24, 052202.Google Scholar

  • Sarapää, O. (1996) Proterozoic primary kaolin deposits at Virtasalmi, south-eastern Finland. Ph.D. thesis, University of Helsinki, 169 p.Google Scholar

  • Schoene, B., Schaltegger, U., Brack, P., Latkoczy, C., Stracke, A., and Günther, D. (2012) Rates of magma differentiation and emplacement in a ballooning pluton recorded by U-Pb TIMS-TEA, Adamello batholith, Italy. Earth and Planetary Science Letters, 355-356, 162–173.Google Scholar

  • Shuster, D.L., Flowers, R.M., and Farley, K.A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters, 249, 148–161.Google Scholar

  • Sliaupa, S., Fokin, P.A., Lazauskiene, J., and Stephenson, R.A. (2006) The Vendian-Early Palaeozoic sedimentary basins of the East European Craton. In D.G. Gee and R.A. Stephenson, Eds., European Lithosphere Dynamics, 32, p. 449–462. Memoirs. Geological Society London, London.Google Scholar

  • Sorjonen-Ward, P. (1993) An overview of structural evolution and lithic units within and intruding the late Archean Hattu schist belt, Ilomantsi, eastern Finland. In P.A. Nurmi and P. Sorjonen-Ward, Eds., Geological development, gold mineralization and exploration methods in the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Special Paper 17, p. 9–102. Geological Survey of Finland, Espoo.Google Scholar

  • Sorjonen-Ward, P., and Claoué-Long, J. (1993) A preliminary note on ion probe results for zircons from the Silvevaara Granodiorite, Ilomantsi, eastern Finland. In S. Autio, Ed., Geological Survey of Finland, Current Research 1991–1992. Special Paper 18. Geological Survey of Finland, pp. 25–29.

  • Sorjonen-Ward, P., Hartikainen, A., Nurmi, P., Rasilainen, K., Schaubs, P., Zhang, Y., and Liikanen, J. (2015) Exploration Targeting and Geological Context of Gold Mineralization in the Neoarchean Ilomantsi Greenstone Belt in Eastern Finland. In W.D. Maier, R. Lahtinen, and H. O’Brien, Eds., Mineral Deposits of Finland, chapter 5.3, p. 435–466. Elsevier.Google Scholar

  • Speer, J.A., and Gibbs, G.V. (1976) The crystal structure of synthetic titanite, CaTiOSiO4 and the domain textures of natural titanites. American Mineralogist, 61, 238–247.Google Scholar

  • Stefanovsky, S.V., Yudintsev, S.V., Giere, R., and Lumpkin, G.R. (2004) Nuclear waste forms. In R. Gierié and P. Stille, Eds., Energy, Waste and the Environment: a Geochemical Perspective. Special Publications 236. Geological Society London, pp. 37–63.Google Scholar

  • Stockli, D.F., and Farley, K.A. (2004) Empirical constraints on the titanite (UTh)/ He partial retention zone from the KTB drill hole. Chemical Geology, 207, 223–236.Google Scholar

  • Tiepolo, M., Oberti, R., and Vannucci, R. (2002) Trace-element incorporation in titanite: Constraints from experimentally determined solid/liquid partition coefficients. Chemical Geology, 191, 105–119.Google Scholar

  • Vaasjoki, M., Sorjonen-Ward, P., and Lavikainen, S. (1993) U-Pb age determinations and sulfide Pb-Pb characteristics from the late Archean Hattu schist belt, Ilomantsi, eastern Finland. In P.A. Nurmi and P. Sorjonen-Ward, Eds., Geological Development, Gold Mineralization and Exploration Methods in the Late Archean Hattu Schist Belt, Ilomantsi, Eastern Finland. Special Paper 17. Geological Survey of Finland, Espoo, pp. 103–131.Google Scholar

  • Weber, W.J., Ewing, R.C., Catlow, C.R.A., Hobbs, L.W., Kinoshita, C., Motta, A.T., Nastasi, M., and Salje, E.K.H. (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. Journal of Materials Research, 13.Google Scholar

  • Wojdyr, M. (2010) Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 43, 1126–1128.Google Scholar

  • Wolf, R.A., Farley, K.A., and Silver, L.T. (1996) Helium diffusion and low-temperature thermochronometry. Planetary Sciences, 60, 4231–4240.Google Scholar

  • Xu, L., Bi, X., Hu, R., Tang, Y., Wang, X., and Xu, Y. (2015) LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang—Red River alkaline igneous belt, SW China. Mineralogy and Petrology, 109, 181–200.Google Scholar

  • Zeitler, P.K. (2015) U-Th/He dating. In J.W. Rink and J.W. Thompson, Eds., Encyclopedia of Scientific Dating Methods, pp. 932–940. Springer.Google Scholar

  • Zeitler, P.K., Herczeg, A.L., McDougall, I., and Honda, M. (1987) U-Th-He dating of apatite: A potential thermochronometer. Geochimica et Cosmochimica Acta, 51, 2865–2868.Google Scholar

  • Zhang, M., and Salje, E.K.H. (2003) Spectroscopic characterization of metamictization and recrystallization in zircon and titanite. Phase Transitions, 76, 117–136.Google Scholar

  • Zhang, M., Salje, E.K.H., Farnan, I., Graeme-Barber, A., Daniel, P., Ewing, R.C., Clark, A.M., and Leroux, H. (2000) Metamictization of zircon: Raman spectroscopic study. Journal of Physics: Condensed Matter, 12, 1915–1925.Google Scholar

  • Zhang, M., Salje, E.K.H., Redfern, S.A.T., Bismayer, U., and Groat, L.A. (2013) Intermediate structures in radiation damaged titanite (CaTiSiO5 a Raman spectroscopic study. Journal of Physics: Condensed Matter, 25, 12.Google Scholar

About the article

* Present address: GEOPS, Université Paris-Sud 11, Université Paris-Saclay, Bât. 504, F-91405 Orsay cedex, France.


Received: 2018-06-13

Accepted: 2019-02-18

Published Online: 2019-05-27

Published in Print: 2019-06-26


Citation Information: American Mineralogist, Volume 104, Issue 6, Pages 857–868, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6681.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in