Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 104, Issue 6


The composition and mineralogy of rocky exoplanets: A survey of >4000 stars from the Hypatia Catalog

Keith D. Putirka
  • Department of Earth and Environmental Sciences, Fresno State, 2345 E. San Ramon Avenue, MS/MH24, Fresno, California 93720, California U.S.A
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ John C. Rarick
  • Department of Earth and Environmental Sciences, Fresno State, 2345 E. San Ramon Avenue, MS/MH24, Fresno, California 93720, California U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-27 | DOI: https://doi.org/10.2138/am-2019-6787


Combining occurrence rates of rocky exoplanets about sun-like stars, with the number of such stars that occupy possibly hospitable regions of the Milky Way, we estimate that at least 1.4 × 108 near-Earth-sized planets occupy habitable orbits about habitable stars. This number is highly imprecise to be sure, and it is likely much higher, but it illustrates that such planets are common, not rare. To test whether such rocky exoplanets might be geologically similar to Earth, we survey >4000 star compositions from the Hypatia Catalog—the most compositionally broad of such collections. We find that rocky exoplanets will have silicate mantles dominated by olivine and/or orthopyroxene, depending upon Fe partitioning during core formation. Some exoplanets may be magnesiowüstite- or quartz-saturated, and we present a new classification scheme based on the weight percent ratio (FeO+MgO)/SiO2, to differentiate rock types. But wholly exotic mantle mineralogies should be rare to absent; many exo-planets will have a peridotite mantle like Earth, but pyroxenite planets should also be quite common. In addition, we find that half or more of the range of exoplanet mantle mineralogy is possibly controlled by core formation, which we model using αFe = FeBSP/FeBP, where FeBSP is Fe in a Bulk Silicate Planet (bulk planet, minus core), on a cation weight percent basis (elemental weight proportions, absent anions) and FeBP is the cation weight percent of Fe for a Bulk Planet. This ratio expresses, in this case for Fe, the fraction of an element that is partitioned into the silicate mantle relative to the total amount available upon accretion. In our solar system, αFe varies from close to 0 (Mercury) to about 0.54 (Mars). Remaining variations in theoretical exoplanet mantle mineralogy result from non-trivial variations in star compositions. But we also find that Earth is decidedly non-solar (non-chondritic); this is not a new result, but appears worth re-emphasizing, given that current discussions often still use carbonaceous or enstatite chondrites as models of Bulk Earth. While some studies emphasize the close overlap of some isotope ratios between certain meteoritic and terrestrial (Earth-derived) samples, we find that major oxides of chondritic meteorites do not precisely explain bulk Earth. To allow Earth to be chondritic (or solar), there is the possibility that Earth contains a hidden component that, added to known reservoirs, would yield a solar/chondritic bulk Earth. We test that idea using a mass balance of major oxides using known reservoirs, so that the sum of upper mantle, metallic core, and crust, plus a hidden component, yields a solar bulk composition. In this approach, the fractions of crust and core are fixed and the hidden mantle component, F h, is some unknown fraction of the entire mantle (so if FDM is the fraction of depleted mantle, then F h + F DM = 1). Such mass balance shows that if a hidden mantle component were to exist, it must comprise >28% of Earth’s mantle, otherwise it would have negative abundances of TiO2 and Al2O3. There is no clear upper limit for such a component, so it could comprise the entire mantle. But all estimates from Fh = 0.28 to Fh = 1.0 yield a hidden fraction that does not match the inferred sources of ocean island or mid-ocean ridge basalts, and would be geologically unusual, having higher Na2O, Cr2O3, and FeO and lower CaO, MgO, and Al2O3 compared to familiar mantle components. We conclude that such a hidden component does not exist.

Keywords: Exoplanets; Hypatia catalog; mineralogy; hidden mantle component; chondrite; bulk earth; meteorites

References cited

  • Agee, C.B., and Walker, D. (1988) Mass balance and phase density constraints on early differentiation of chondritic mantle. Earth and Planetary Science Letters, 90, 144–156.Google Scholar

  • Agrusta, R., van Hunen, J., and Goes, S. (2018) Strong plate enhance mantle mixing in early Earth. Nature Communications, 9, 1–10. doi: 10.1038/s41467-018-05194-5Google Scholar

  • Albarede, F., and van der Hilst, R.D. (2002) Zoned mantle convection. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 360, 2569–2592.Google Scholar

  • Anderson, D.L. (1989) Theory of Earth, 366 p. Blackwell Scientific Publications.Google Scholar

  • Anderson, D.L., and Jordan, T. (1970) The composition of the lower mantle. Physics of Earth and Planetary Interiors, 3, 23–35.Google Scholar

  • Antonangeli, D., Morard, G., Schmerr, N.C., Kombayashi, T., Krisch, M., Fiquet, G., and Fei, Y. (2015) Toward a mineral physics reference model for the Moon’s core. Proceedings of the National Academy of Sciences, 112, 3916–3919.Google Scholar

  • Baron, F. et al. (2018) WEIRD: Wide-orbit exoplanet search with infrared direct imaging. The Astronomical Journal, 156, 137, 19 pp.Google Scholar

  • Barry, T.L., Davies, J.H., Wolstencroft, M., Millar, I.L., Zhao, Z., Jian, P., Safovana, I., and Price, M. (2018) Whole-mantle convection with tectonic plates preserves long-term global patters of upper mantle geochemistry. Scientific Reports, 7, doi: 10.1038/s41598-017-01816-yGoogle Scholar

  • Beichman, C., et al. (2014) Observations of transiting exoplanets with the James Webb Space Telescope. Publications of the Astronomical Society of the Pacific, 126, 1134–1173.Google Scholar

  • Bodinier, J-L., Garrido, C.J., Chanefo, I., Bruguier, O., and Gervilla, F. (2008) Origin of pyroxenite-peridotite veined mantle by refertilization reactions: evidence from the Ronda Peridotite (southern Spain). Journal of Petrology, 49, 999–1025.Google Scholar

  • Bodman, E.H.L., Wright, J.T., Desch, S.J., and Lisse, C.M. (2018) Inferring the composition of disintegrating planet interiors from dust tails with future James Webb pace Telescope Observations. The Astronomical Journal, 156, 117, 8 pp.Google Scholar

  • Bouvier, A., and Boyet, M. (2016) Primitive solar system materials and Earth share a common initial 142Nd abundance. Nature, 537, 399–402.Google Scholar

  • Boyet, M., and Carlson, R.W. (2005) 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science, 309, 576–581.Google Scholar

  • Buchhave, L.A., et al. (2012) An abundance of small exoplanets around stars with a wide range of metallicities. Nature, 486, 375–377.Google Scholar

  • Butler, R.P., et al. (2017) The LCES HIRES/Keck precision radial velocity exoplanet survey. The Astronomical Journal, 153, 208, 19 pp.Google Scholar

  • Bystricky, M., Lawlis, J., Mackwell, S., Heidelbach, F., and Raterson, P. (2016) High-temperature deformation of enstatite aggregates. Journal of Geophysical Research, doi: 10.1002/2016JB13011.

  • Cartier, C., and Wood, B.J. (2019) The role of reducing conditions in building Mercury. Elements, 15, 39–45.Google Scholar

  • Charlier, B., and Namur, O. (2019) The origin and differentiation of planet Mercury. Elements, 15, 9–14.Google Scholar

  • Charlier, B., Grove, T.L., and Zuber, M.T. (2013) Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth and Planetary Science Letters, 363, 50–60.Google Scholar

  • Chayes, F. (1960) On correlation between variables of constant sum. Journal of Geophysical Research, 65, 4185–4193.Google Scholar

  • Clanton, C., and Gaudi, B.S. (2014a) Synthesizing exoplanet demographics from radial velocity and microlensing surveys. II. The frequency of planets orbiting dwarfs. The Astrophysical Journal, 791, 91, 23 pp.Google Scholar

  • Clanton, C., and Gaudi, B.S. (2014b) Synthesizing exoplanet demographics: a single population of long-period planetary companions to M dwarfs consistent with microlensing, radial velocity, and direct imaging surveys. The Astrophysical Journal, 819, 125, 42 pp.Google Scholar

  • Connolly, H. Jr., and Jones, R. (2016) Chondrules: the canonical and non-canonical view. Journal of Geophysical Research, 121, 1885–1899. doi: 10.1002/2016JE005113Google Scholar

  • Cross, W., Iddings, J.P., Pirsson, L.V., and Washington, H.S. (1902) A quantitative chemico-mineralogical classification and nomenclature of igneous rocks. Journal of Geology, 10, 555–690.Google Scholar

  • Cumming, A., Butler, R.P., Marcy, G.W., Vogt, S.S., Wright, J.T., and Fischer, D.A. (2008) The Keck planet search: detectability and the minimum mass and orbital period distribution of extrasolar planets. Publications of the Astronomical Society of the Pacific, 120, 531–554.Google Scholar

  • Davies, G.F. (1974) Limits on the constitution of the lower mantle. Geophysical Journal of the Astronomical Society, 38, 479–503.Google Scholar

  • Davies, G.F. (1977) Whole-mantle convection and plate tectonics. Geophysical Journal of the Royal Astronomical Society, 49, 459–486.Google Scholar

  • Davies, G.F. (1988) Ocean bathymetry and mantle convection 1. Large-scale flow and hotspots. Journal of Geophysical Research, 93, 10467–10480.Google Scholar

  • Davies, D.R., Goes, S., Davies, J.H., Schuberth, B.S.A., Bunge, H.-P., and Ritsema, J. (2012) Reconciling dynamic and seismic models of Earth’s lower mantle: the dominant role of thermal heterogeneity. Earth and Planetary Science Letters, 353-354, 253–269.Google Scholar

  • Davies, G.F., and Richards, M.A. (1992) Mantle convection. Journal of Geology, 100, 151–206.Google Scholar

  • Drake, M. J., and Righter, K. (2002) Determining the composition of the Earth. Nature, 416, 39–44.Google Scholar

  • Dressing, C.D., and Charbonneau, D. (2013) The occurrence rate of small planets around small stars. Astrophysical Journal, 767, arXiv:1302.1647.Google Scholar

  • Dressing, C.D., and Charbonneau, D. (2015) The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurements of detection sensitivity. Astrophysical Journal, 807, doi:10.88/0004-637X/807/1/45.Google Scholar

  • Duffy, T., Madhusudhan, N., and Lee, K.K.M. (2015) Mineralogy of super-Earth planets. Treatise on Geophysics, 2nd ed., 2, 149–178. Elesvier.Google Scholar

  • Ecuvillon, A., Israelian, G., Santos, N.C., Schukina, N.G., Mayor, M., and Rebolo, R. (2006) Oxygen abundances in planet-harbouring stars. Astronomy and Astrophysics, 445, 633–645.Google Scholar

  • Farnetani, C.G. (1997) Excess temperature of mantle plumes: the role of chemical stratification across D″. Geophysical Research Letters, 24, 1583–1586.Google Scholar

  • Fegley, B. Jr., Jacobson, N.S., Williams, K.B., Plane, J.M.C., Schefer, L., and Lodders, K. (2016) Solubility of rock in steam atmosphere of planets. The Astrophysical Journal, 824, 103.Google Scholar

  • Fischer, D.A., and Valenti, J. (2005) The planet-metallicity correlation. The Astrophysical Journal, 622, 1102–1117.Google Scholar

  • Fitoussi, C., Bourdon, B., Keline, T., Oberli, F., and Reynolds, B.C. (2009) Si isotope systematics of meteorites and terrestrial peridotites: Implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth and Planetary Science Letters, 287, 77–85.Google Scholar

  • Foley, B.J., and Driscoll, P.E. (2017) Whole planet coupling between climate, mantle, and core: implications for the evolution of rocky planets. arXiv:1711.06801v1 [astro-ph.EP] 18 Nov 2017.Google Scholar

  • Fukao, Y., and Obayashi, M. (2013) Subducted slabs stagnate above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research, 118, 5920–5938.Google Scholar

  • Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., and Schilling, J-G. (2013) The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14, doi:10.1029/2012GC004334.Google Scholar

  • Gillon, M.A. et al. (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 542, 456–460.Google Scholar

  • Goodwin, S.P., Gribbin, J., and Hendry, M.A. (1998) The relative size of the Milky Way. The Observatory, 118, 201–208.Google Scholar

  • Gowanlock, M.G. (2016) Astrobiology effects of gamma-ray bursts in the Milky Way galaxy. The Astrophysical Journal, 832, 38, 12 pp.Google Scholar

  • Gowanlock, M.G., and Morrison, I.A. (2018) The habitability of our evolving galaxy. arXiv:1082.07036v2 [astro-ph.Ep]Google Scholar

  • Grand, S.P., van der Hilst, R., and Widiyantoro, S. (1997) Global seismic tomography: a snapshot of convection in the Earth. GSA Today, 74, 1–6.Google Scholar

  • Grimm, S.L. (2018) The nature of the TRAPPIST-1 exoplanets. arXiv:1802.01377v1 [astro-ph.EP].Google Scholar

  • Hansen, L.N., and Warren, J.M. (2015) Qunatifying the effect of pyroxene on deformation of peridotite in a natural shear zone. Journal of Geophysical Research, 120, 2717–2738. doi: 10.1002/2014JB011584.Google Scholar

  • Hazen, R.M., Grew, E.S., Downs, R.T., Golden, J., and Hystad, G. (2015) Mineral ecology; chance and necessity in the mineral diversity of terrestrial planets. Canadian Mineralogist, 53, 295–324.Google Scholar

  • He, Y., and Wen, L. (2012) Geographic boundary of the “Pacific Anomaly” and its geometry and transitional structure in the north. Journal of Geophysical Research, 117, B09308.Google Scholar

  • Hewins, R.H., and Herzberg, C.T. (1996) Nebular turbulence, chondrule formation, and the composition of the Earth. Earth and Planetary Science Letters, 144, 1–7.Google Scholar

  • Hinkel, N.R., Timmes, F.X., Young, P.A., Pagano, M.D., and Turnbull, M.C. (2014) Stellar abundances in the solar neighborhood: the Hypatia Catalog. The Astronomical Journal, 148, 54 (33 pp.).Google Scholar

  • Hinkel, N.R., et al. (2016) A comparison of stellar elemental abundance techniques and measurements. The Astrophysical Journal Supplement Series, 226, 4 (66 p.).Google Scholar

  • Hinkel, N.R., and Unterborn, C.T. (2018) The star-planet connection I: using stellar composition to observationally constrain planetary mineralogy for the ten closest stars, The Astrophysical Journal, 853, article id. 83, 14 pp; arXiv:1709.068630v2 [astro-ph.EP] 5 Jan 2018.Google Scholar

  • Hirose, K. (2002) Phase transitions in pyrolytic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. Journal of Geophysical Research, doi: 10.1029/2001JB000597.

  • Hirschmann, M.M., and Stolper, E.M. (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contributions to Mineralogy and Petrology, 124, 185–208.Google Scholar

  • Hirschmann, M.M., Ghiorso, M.S., and Davis, F.A. (2008) Library of experimental phase relations (LEPR): a database and web portal for experimental magmatic phase equilibria data. Geochemistry, Geophysics, Geosystems, doi:10.1029/2007GC001894.

  • Hyung, E., Huang, S., Petaev, M.I., and Jacobsen, S.B. (2016) Is the mantle chemically stratified? Insights from sound velocity modeling and isotope evolution of an early magma ocean. Earth and Planetary Science Letters, 440, 158–168.Google Scholar

  • Irfune, T., Shinmei, T., McCammon, C.A., Miyajima, N., Rubie, D.C., and Frost, D.J. (2010) Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science, 327, 193–195.Google Scholar

  • Janson, M., Bergfors, C., Goto, M., Brandner, W., and Lafrenier, D. (2010) Spatially resolved spectroscopy of the exoplanet HR 8799 c. Astrophysical Journal Letters, 710, L35–L38.Google Scholar

  • Javoy, M., Kaminski, E., Guyot, F., Andrault, D., and Sanloup, C. (2010) The chemical composition of the Earth: enstatite chondrite models. Earth and Planetary Science Letters, 293, 259–268.Google Scholar

  • Jordan, T.H. (1977) Lithospheric slab penetration into the lower mantle beneath the Sea of Okhotsk. Journal of Geophysics, 43, 473–496.Google Scholar

  • Jordan, T.H., Puster, P., Glatzmaier, G.A., and Tackley, P.J. (1993) Comparisons between seismic Earth structures and mantle flow models based on radial correlation-functions. Science, 261, 1427–1431.Google Scholar

  • Kahn, A., Maclennan, J., Taylor, S.R., and Connolly, J.A.D. (2006) Are the Earth and the moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution form geophysical modeling. Journal of Geophysical Research, 111, doi:10.1029/2005JE002608.Google Scholar

  • Kaib, N.A. (2018) Galactic effects on habitability. arXiv:1801.01474v1 [astro-ph.EP] 4 Jan 2018.Google Scholar

  • Keil, K. (2010) Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295–317.Google Scholar

  • Kraus, A.L., Ireland, M.J., Huber, D., Mann, A.W., and Dupuy, T.J. (2016) The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. The Astronomical Journal, 152, 8, 17 pp.Google Scholar

  • Krissansen-Totten, J., Garland, R., Irwin, P., and Catling, C. (2018) Detectability of biosignatures in anoxic atmospheres with the James Webb Space Telescope: a TRAPPIST-1r case study. The Astronomical Journal, 156, 114, 13 pp.Google Scholar

  • Lambart, S., Laporte, D., and Schiano, P. (2009) An experimental study of pyroxenite partial melts at 1 and 1.5 GPa: implications for the major-element composition of mid-ocean ridge basalts. Earth and Planetary Science Letters, 288, 335–347.Google Scholar

  • Lambart, S., Baker, M.B., and Stolper, E.M. (2016) The role of pyroxenite in basalt genesis: melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. Journal of Geophysical Research, 10.1002/2015JB012762.Google Scholar

  • Le Bas, M.J., and Streckeisen, A.L. (1991) The IUGS systematics of igneous rocks. Journal of the Geological Society of London, 148, 825–833.Google Scholar

  • Lemasle, B. et al. (2013) Galactic abundance gradients from Cepheids. Astronomy and Astrophysics, 558, A31, doi:10.1051/0004-6361/201322115.Google Scholar

  • Lineweaver, C.H., Fenner, Y., and Gibson, B.K. (2004) The galactic habitable zone and the age distribution of complex life in the Milky Way. Science, 303, 59–62.Google Scholar

  • Lodders, K. (2003) Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal, 591, 1220–1247.Google Scholar

  • Lodders, K. (2010) Solar system abundances and condensation temperatures of the elements. In Principles and Perspectives of Cosmochemistry, Lecture Notes of the Koday School on ‘Synthesis of Elements in Stars’, p. 379–417. Astrophysics and Space Science Proceedings. Springer.Google Scholar

  • Lodders, K., and Fegley, B. Jr. (1997) An oxygen isotope model for the composition of Mars. Icarus, 126, 373–394.Google Scholar

  • Lodders, K., and Fegley, B. Jr. (2018) Chemistry of the Solar System, RSCPublishing, Royal Society of Chemistry, www.rsc.org, 476 p.Google Scholar

  • Longhi, J. (2006) Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation. Geochimica et Cosmochimica Acta, 70, 5919–5934.Google Scholar

  • Lopez-Corredoira, M., Prieto, C.A., Garzon, F., Wang, H., Liu, C., and Deng, L. (2018) Disk stars in the Milky Way detected beyond 25 kbc from its center. Astronomy and Astrophysics, 612, L814 pp.Google Scholar

  • Luck, R.E., and Lambert, D.L. (2011) The distribution of the elements in the galactic disk. III. A reconsideration of cepheids from l = 30° to 250°. The Astronomical Journal, 142, 136, 16 pp.Google Scholar

  • McDonough, W.F., and Sun, S.-s. (1995) The composition of the Earth. Chemical Geology, 120, 223–253.Google Scholar

  • Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, E.R., and Hung, S-H. (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.Google Scholar

  • Morgan, J.W., and Anders, E. (1979) Chemical composition of Mars. Geochimica et Cosmochimica Acta, 43, 1601–1610.Google Scholar

  • Morgan, J.W., and Anders, E. (1980) Chemical composition of Earth, Venus and Mercury. Proceedings of the National Academy of Sciences, 77, 6973–6977.Google Scholar

  • Mulders, G.D., Pascucci, I., Apai, D., and Ciesla, F.J. (2018) The Exoplanet Population Observations Simulator. I. The inner edges of planetary systems. The Astronomical Journal, 156, 20 pp. doi: 10.3847/1538-3881/aac5eaGoogle Scholar

  • Murakami, M., Ohishi, Y., Hirao, N., and Hirose, K. (2012) A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature, 485, 90–94.Google Scholar

  • Nittler, L.R., McCoy, T.J., Clark, P.E., Murphy, M.E., Trombka, J.I., and Jaroseich, E. (2004) Bulk element compositions of meteorites: a guide for interpreting remote-sensing geochemical measurements of planets and asteroids. Antarctic Meteorite Research, 17, 233–253.Google Scholar

  • Nittler, L.R., et al. (2011) The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 1847–1850.Google Scholar

  • Nittler, L.R. and Weider, S.Z. (2019) The surface composition of Mercury. Elements, 15, 33–38.Google Scholar

  • Palme, H. (2000) Are there chemical gradients in the inner solar system? Science Reviews, 192, 237–262.Google Scholar

  • Palme, H., and O’Neill, H. St.C. (2014) Cosmochemical estimates of mantle composition. Treatise on Geochemistry, 2nd ed. Elsevier.Google Scholar

  • Pottasch, S.R. (1964) A comparison of the chemical composition of the solar atmosphere with meteorites. Annales de Astrophysique, 27, 163–169.Google Scholar

  • Prantzos, N. (2006) On the “galactic habitable zone”. arXiv:astro-ph/0612316v1.

  • Putirka, K. (2005) Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally-driven mantle plumes. Geochemistry, Geophysics, Geosystems, doi:10.1029/005GC000915.

  • Putirka, K., Perfit, M., Ryerson, F.J., and Jackson, M.G. (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology, 241, 177–206.Google Scholar

  • Putirka, K., Ryerson, F.J., Perfit, M., and Ridley, W.I. (2011) Mineralogy and composition of the oceanic mantle. Journal of Petrology, 52, 279–313.Google Scholar

  • Putirka, K., Tao, Y., Hari, K.R., Perfit, M., Jackson, M.G., and Arevalo, R. Jr. (2018) The mantle source of thermal plumes: trace and minor elements and major oxides of primitive liquids (and why the olivine compositions don’t matter). American Mineralogist, 103, 1253–1270.Google Scholar

  • Quarles, B., Quintana, E.V., Lopez, E., Schlieder, J.E., and Barclay, T. (2017) Plausible compositions of the seven TRAPPIST-1 planets using long-term dynamical simulations. arXiv:1704.02261v2 [astro-ph.EP].Google Scholar

  • Rackham, B.V., Apai, D., and Giampapa, M.S. (2018) The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. The Astrophysical Journal, 853, 122, 18 pp.Google Scholar

  • Ramirez, R., Gomez-Munoz, M.A., Vazquez, R., and Nunez, P.G. (2018) New numerical determination of habitability in the galaxy: the SETI connection. International Journal of Astrobiology, 17, 34–43.Google Scholar

  • Ringwood, A.E. (1966) Genesis of chondrite meteorites. Reviews of Geophysics, 4, 113–175.Google Scholar

  • Rubie, D.C., Frost, D.J., Mann, U., Asahara, Y., Nimmo, F., Tsuno, K., Kegler, P., Holzheid, A., and Palme, H. (2011) Heterogeneous accretion, composition and coremantle differentiation of the Earth. Earth and Planetary Science Letters, 301, 31–42.Google Scholar

  • Rubie, D.C., Jacobsen, S.A., Morbidelli, A., O’Brien, D.P. Young, E.D., de Vries, J., Nimmo, F., Palme, H., and Frost, D.J. (2015) Accretion and differentiation of the terrestrial planets with implications for the compositions of the early-formed Solar System bodies and accretion of water. Icarus, 248, 89–108.Google Scholar

  • Rudnick, R.L., and Gao, S. (2003) Composition of the Continental Crust. In R.K. Rudnick, Ed., Treatise on Geochemistry, 3, The Crust, 1–64. Elsevier-Pergamon.

  • Salters, V.J.M., and Stracke, A. (2003) Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5. doi:10.1029/2003GC000597.Google Scholar

  • Schaefer, L., and Fegley, B. Jr. (2010) Chemistry of atmosphere formed during accretion of the Earth and other terrestrial planets. Icarus, 208, 438–448.Google Scholar

  • Schaefer, L., and Fegley, B. Jr. (2017) Redox states of initial atmosphere outgassed on rocky planets and planetesimals. The Astrophysical Journal, 843, 120.Google Scholar

  • Schuberth, B.S.A., Bunge, H.P., and Ritsema, J. (2009) Tomographic filtering of high-resolution mantle circulation models: can seismic heterogeneity be explained by temperature alone? Geochemistry, Geophysics, Geosystems, 10. doi: 10.1029/2009/GC002401Google Scholar

  • Sisson, T.W., Ratajeski, K., Hankin, W.B., and Glazner, A.F. (2005) Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148, 635–661.Google Scholar

  • Shields, A.L., Ballards, S., and Johnson, J.A. (2016) The habitability of planets orbiting M-dwarf stars. Physics Reports, 663, 1–38.Google Scholar

  • Sleep, N.H., and Zahnle, K. (2001) Carbon dioxide cycling and implications for climate on ancient Earth. Journal of Geophysical Research, 106, 1373–1399.Google Scholar

  • Sobolev et al. (2007) The amount of recycled crust in sources of mantle-derived melts. Science, 316, 412–417.Google Scholar

  • Steenstra, E.S., Knibbe, J.S., Rai, N., and van Westrenen, W. (2016) Constraints on core formation in Vesta from metal-silicate partitioning of siderophile elements. Geochimica et Cosmochimica Acta, 177, 48–61.Google Scholar

  • Stern, R.J. (2006) Is plate tectonics needed to evolve technological species on exoplanets? Geoscience Frontiers, 7 573–580.Google Scholar

  • Tachinami, C., Senshu, H., and Ida, S. (2011) Thermal evolution and lifetime of intrinsic magnetic fields of super-earths in habitable zones. Astrophysical Journal, 726, doi.org/10.1088/0004-637X/726/2/70.Google Scholar

  • Taylor, G.J. (2013) The bulk composition of Mars. Chemie der Erde, 73, 401–420.Google Scholar

  • Thiabaud, A., Marboeuf, U., Alibert, Y., Leya, I., and Mezger, K. (2015a) Elemental ratios in stars vs. planets. Astronomy and Astrophysics, 580, A30. doi: 10.1051/00046361/201525963Google Scholar

  • Thiabaud, A., Marboeuf, U., Alibert, Y., Leya, I., and Mezger, K. (2015b) Gas composition of the main volatile elements in protoplanetary discs and its implication for planet formation. Astronomy and Astrophysics, 574, A138. doi: 10.1051/0004-6361/201424868Google Scholar

  • Thompson, J.B. (1982) Reaction space: An algebraic and geometric approach. In J.M. Ferry, Ed., Characterization of Metamorphism Through Mineral Equilibria, 10, p. 33–52. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Thompson, S.E. et al. (2018) Planetary candidates observed by Kepler. VIII. A fully automated catalog with measured completeness and reliability based on Data Release 25. Astrophysical Journal Supplement, 235, 38. doi:10.3847/1538-4365/aab4f9Google Scholar

  • Unterborn, C.T., and Panero, W.R. (2017) The effects of Mg/Si on the exoplanetary refractory oxygen budget. The Astrophysical Journal, 845, 61 (9 pp).Google Scholar

  • Unterborn, C.T., Johnson, J.A., and Panero, W.R. (2015) Thorium abundances in solar twins and analogs: implications for the habitability of extrasolar planetary systems. The Astrophysical Journal, 806, 139, 8 pp.Google Scholar

  • Unterborn, C.T., Hull, S.D., Stixrude, L., Teske, J.K., Johnson, J.A., and Panero, W.R. (2017) Stellar chemical clues as to the rarity of exoplanetary tectonics. arXiv:1706.10282v2 [astro-ph.EP] 3 Jul 2017.

  • Unterborn, C.T., Desch, S.J., Hinkel, N.R., and Lorenzo, A. (2018) Inward migration of the TRAPPIST-1 planets as inferred from their water-rich compositions. Nature Astronomy, 2, 297–302.Google Scholar

  • van der Hilst, R.D., and Karason, H. (2000) Compositional heterogeneity in the bottom 1000 kilometers of Earth’s mantle: toward a hybrid convection model. Science, 283, 1885–1888.Google Scholar

  • Vanderspek, R.K. et al. (2018) TESS discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844. arXiv:1809.07242v1.

  • Wade, J., and Wood, B.J. (2005) Core formation and the oxidation state of the Earth. Earth and Planetary Science Letters, 236, 78–95.Google Scholar

  • Walter, M. J. (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39, 29–60.Google Scholar

  • Wambsganss, J. (2016) Discovering extrasolar planets with microlensing surveys. Astronomical Surveys and Big data, APS Conference Series, 505, 35–43.Google Scholar

  • Warren, J.M. (2016) Global variations in abyssal peridotite compositions. Lithos, 248-251, 193–219.Google Scholar

  • Weller, M.B., and Lenardic, A. (2018) O the evolution of terrestrial planets: bi-stability, stochastic effects, and the non-uniqueness of tectonic states. Geoscience Frontiers, 9, 91–201.Google Scholar

  • Wood, B. J., Kiseeva, E., and Mirolo, F.J. (2014) Accretion and core formation: the effects of sulfur on metal-silicate partition coefficients. Geochimica et Cosmochimica Acta, 145, 248–267.Google Scholar

  • Workman, R.K., and Hart, S.R. (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231, 53–72.Google Scholar

  • Xu, S., Jura, M., Koester, D., Klein, B., and Zuckerman, B. (2014) Elemental compositions of two extrasolar rocky planetesimals. arXiv:1401.4252v1 [astro-ph.EP] 17 Jan 2014.

  • Xu, S., Dufour, P., Monson, N., Klein, B., Zuckerman, B., and Young, E. (2018) Compositions of extrasolar minor planets from polluted white dwarf studies. Goldschmidt Abstracts 2018, 2879.Google Scholar

  • Yamamoto, J., Ando, J.-i., Kagi, H., Inoue, T., Yamada, A., and Yamazake, D. (2008) In situ strength measurements on natural upper mantle minerals. Physics and Chemistry of Minerals, 35, 249–257.Google Scholar

  • Zeng, L., Sasselov, D.D., and Jacobsen, S.B. (2016) Mass-radius relation for rocky planets based on PREM. The Astrophysical Journal, 819, 127, 5 pp.Google Scholar

About the article

Received: 2018-08-20

Accepted: 2019-02-28

Published Online: 2019-05-27

Published in Print: 2019-06-26

Citation Information: American Mineralogist, Volume 104, Issue 6, Pages 817–829, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6787.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in