Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 104, Issue 6

Issues

Neither antigorite nor its dehydration is “metastable”

Thomas P. Ferrand
  • Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan. Orcid 0000-0001-7576-517X
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-27 | DOI: https://doi.org/10.2138/am-2019-6957

References cited

  • Abers, G.A., Nakajima, J., van Keken, P.E., Kita, S., and Hacker, B.R. (2013) Thermalpetrological controls on the location of earthquakes within subducting plates. Earth and Planetary Science Letters, 369, 178–187.Google Scholar

  • Bai, Q., and Kohlstedt, D.L. (1992) Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature, 357, 672.Google Scholar

  • Bloch, W., John, T., Kummerow, J., Salazar, P., Krüger, O.S., and Shapiro, S.A. (2018) Watching dehydration: Seismic indication for transient fluid pathways in the oceanic mantle of the subducting Nazca Slab. Geochemistry, Geophysics, Geosystems, 19(9), 3189–3207.Google Scholar

  • Cai, C., Wiens, D.A., Shen, W., and Eimer, M. (2018) Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature, 563, 389–392.Google Scholar

  • Chernak, L., and Hirth, G. (2010) Deformation of antigorite serpentinite at high temperature and pressure. Earth and Planetary Science Letters, 296, 23–33.Google Scholar

  • Chernak, L., and Hirth, G. (2011) Syndeformational antigorite dehydration produces stable fault slip. Geology, 39, 847–850.Google Scholar

  • Chollet, M., Daniel, I., Koga, K.T., Petitgirard, S., and Morard, G. (2009) Dehydration kinetics of talc and 10 Å phase: Consequences for subduction zone seismicity. Earth and Planetary Science Letters, 284(1-2), 57–64.Google Scholar

  • Chollet, M., Daniel, I., Koga, K.T., Morard, G., and van de Moortèle, B. (2011) Kinetics and mechanism of antigorite dehydration: Implications for subduction zone seismicity. Journal of Geophysical Research: Solid Earth, 116, 1–9.Google Scholar

  • Dunn, R.A., Arai, R., Eason, D.E., Canales, J.P., and Sohn, R.A. (2017) Three-dimensional seismic structure of the Mid-Atlantic Ridge: An investigation of tectonic, magmatic, and hydrothermal processes in the Rainbow Area. Journal of Geophysical Research: Solid Earth, 122, 9580–9602.Google Scholar

  • Ferrand, T.P. (2019) Seismicity and mineral destabilizations in the subducting mantle up to 6 GPa, 200 km depth. Lithos, 334-335, 205–230Google Scholar

  • Ferrand, T.P., Hilairet, N., Incel, S., Deldicque, D., Labrousse, L., Gasc, J., and Schubnel, A. (2017) Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nature Communications, 8, 15247.Google Scholar

  • Gasc, J., Schubnel, A., Brunet, F., Guillon, S., Mueller, H., and Lathe, C. (2011) Simultaneous acoustic emissions monitoring and synchrotron X‑ray diffraction at high pressure and temperature: Calibration and application to serpentinite dehydration. Physics of Earth and Planetary Interiors, 189, 121–133.Google Scholar

  • Gualtieri, A.F., Giacobbe, C., and Viti, C. (2012) The dehydroxylation of serpentine group minerals. American Mineralogist, 97, 666–680.Google Scholar

  • Hacker, B.R., Peacock, S.M., and Abers, G.A. (2003) Subduction factory: 2. Intermediate-depth earthquakes in subducting slabs are linked to metamorphic dehydration reactions. Journal of Geophysical Research: Solid Earth, 108.Google Scholar

  • Hilairet, N., Daniel, I., and Reynard, B. (2006) Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones. Geophysical Research Letters, 33(2).Google Scholar

  • Inoue, T., Yoshimi, I., Yamada, A., and Kikegawa, T. (2009) Time-resolved X‑ray diffraction analysis of the experimental dehydration of serpentine at high pressure. Journal of Mineralogical and Petrological Sciences, 104(2), 105–109.Google Scholar

  • Liu, T., Wang, D., Shen, K., Liu, C., and Yi, L. (2019) Kinetics of antigorite dehydration, American Mineralogist, 104, 282−290.Google Scholar

  • Kita, S., and Ferrand, T.P. (2018) Physical mechanisms of oceanic mantle earthquakes: Comparison of natural and experimental events. Scientific Reports, 8, 17049.Google Scholar

  • Kunze, G. (1961) Antigorit. Strukturtheoretische Grundlagen und ihre praktische Bedeutung für die weitere Serpentin-Forschung. Fortschritte in Mineralogie, 9, 206–324.Google Scholar

  • Mellini, M., Trommsdorff, V., Compagnoni, R. (1987) Antigorite polysomatism: behaviour during progressive metamorphism. Contributions to Mineralogy and Petrology, 97, 147–155.Google Scholar

  • Okazaki, K., and Hirth, G. (2016) Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust. Nature, 530, 81.Google Scholar

  • Peacock, S. (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29(4), 299–302.Google Scholar

  • Perrillat, J.-P., Daniel, I., Koga, K.T., Reynard, B., Cardon, H., and Crichton, W.A. (2005) Kinetics of antigorite dehydration; a real-time X‑ray diffraction study. Earth and Planetary Science Letters, 236, 899–913.Google Scholar

  • Plümper, O., John, T., Podladchikov, Y.Y., Vrijmoed, J.C., and Scambelluri, M. (2017) Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nature Geoscience, 10(2), 150.Google Scholar

  • Rubie, D.C. (1990) Role of kinetics in the formation and preservation of eclogites. Eclogite Facies Rocks, 111–140.

  • Scambelluri, M., Pennacchioni, G., Gilio, M., Bestmann, M., Plümper, O., and Nestola, F. (2017) Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release. Nature Geoscience, 10, 960–996.Google Scholar

  • Schwarzenbach, E.M. (2016) Research focus: Serpentinization and the formation of fluid pathways. Geology, 44(2), 175–176.Google Scholar

  • Shillington, D.J. (2018) Water takes a deep dive into the Mariana Trench. Nature, 563, 335–336.Google Scholar

  • Thielmann, M. (2017) Grain size assisted thermal runaway as a nucleation mechanism for continental mantle earthquakes: Impact of complex rheologies. Tectonophysics, 746, 611–623.Google Scholar

  • Trittschack, R., and Grobéty, B. (2012) Dehydroxylation kinetics of lizardite. European Journal of Mineralogy, 24(1), 47–57.Google Scholar

  • Trittschack, R., and Grobéty, B. (2013) The dehydroxylation of chrysotile: A combined in situ micro-Raman and micro-FTIR study. American Mineralogist, 98, 1133–1145.Google Scholar

  • Trittschack, R., Grobéty, B., and Brodard, P. (2014) Kinetics of the chrysotile and brucite dehydroxylation reaction: a combined non-isothermal/isothermal thermogravimetric analysis and high-temperature X‑ray powder diffraction study. Physics and Chemistry of Minerals, 41(3), 197–214.Google Scholar

  • Tutolo, B.M., Mildner, D.F.R., Gagnon, C.V.L., Saar, M.O., and Seyfried, W.E. (2016) Nanoscale constraints on porosity generation and fluid flow during serpentinization. Geology, 44, 103–106.Google Scholar

  • Wang, D., Yi, L., Huang, B., and Liu, C. (2015) High-temperature dehydration of talc: a kinetics study using in situ X‑ray powder diffraction. Phase Transitions, 88(6), 560–566.Google Scholar

  • Wunder, B., and Schreyer, W. (1997) Antigorite: High pressure stability in the system MgO-SiO2-H2O (MSH). Lithos, 41, 213–227.Google Scholar

  • Wunder, B., Wirth, R., and Gottschalk, M. (2001) Antigorite pressure and temperature dependence of polysomatism and water content. European Journal of Mineralogy, 13(3), 485–496.Google Scholar

  • Zhou, S., Wei, Y., Li, B., Ma, B., Wang, C., and Wang, H. (2017) Kinetics study on the dehydroxylation and phase transformation of Mg3Si2O5(OH)4 Journal of Alloys and Compounds, 713, 180–186.Google Scholar

About the article

Received: 2019-01-11

Accepted: 2019-02-23

Published Online: 2019-05-27

Published in Print: 2019-06-26


Citation Information: American Mineralogist, Volume 104, Issue 6, Pages 788–790, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2019-6957.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in