Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Open Access
Online
ISSN
1689-0469
See all formats and pricing
More options …

Investigating ground vibration to calculate the permissible charge weight for blasting operations of Gotvand-Olya dam underground structures / Badania drgań gruntu w celu określenia dopuszczalnego ciężaru ładunku wybuchowego przy pracach strzałowych w podziemnych elementach tamy w Gotvand-Olya

Saeed Soltani-Mohammadi / Hassan Bakhshandeh Amnieh / Moein Bahadori
Published Online: 2012-11-22 | DOI: https://doi.org/10.2478/v10267-012-0044-z

Abstract

Ground vibration, air vibration, fly rock, undesirable displacement and fragmentation are some inevitable side effects of blasting operations that can cause serious damage to the surrounding environment. Peak Particle Velocity (PPV) is the main criterion in the assessment of the amount of damage caused by ground vibration. There are different standards for the determination of the safe level of the PPV. To calculate the permissible amount of the explosive to control the damage to the underground structures of Gotvand Olya dam, use was made of sixteen 3-component (totally 48) records generated from 4 blasts. These operations were recorded in 3 directions (radial, transverse and vertical) by four PG-2002 seismographs having GS-11D 3-component seismometers and the records were analyzed with the help of the DADISP software. To predict the PPV, use was made of the scaled distance and the Simulated Annealing (SA) hybrid methods. Using the scaled distance resulted in a relation for the prediction of the PPV; the precision of the relation was then increased to 0.94 with the help of the SA hybrid method. Relying on the high correlation of this relation and considering a minimum distance of 56.2 m to the center of the blast site and a permissible PPV of 178 mm/s (for a 2-day old concrete), the maximum charge weight per delay came out to be 212 Kg.

Drgania gruntu, rozchodzenie się drgań w powietrzu, rozrzut skał, ich niepożądane przemieszczenia i rozdrobnienie to nieuchronne skutki prowadzenia prac strzałowych, które spowodować mogą poważne spustoszenie w środowisku naturalnym. Maksymalna prędkość drgań cząstek (PPV) to główne kryterium przy ocenie szkód spowodowanych przez drgania podłoża. Istnieje wiele norm określających bezpieczne poziomy prędkości drgań cząstek (PPV). Obliczenie dopuszczalnej wielkości ładunku wybuchowego w taki sposób, by zapobiegać uszkodzeniom podziemnych elementów tamy Gotvand Olya opiera się na wykorzystaniu 16 3-elementowych zestawów danych zarejestrowanych w trakcie 4 wybuchów. Procedura rejestracji obejmuje zapisy drgań w 3 kierunkach (promieniowe, poprzeczne i pionowe) zarejestrowane przez 4 sejsmografy wyposażone w sejsmometry GS-11D, zaś same zapisy analizowano przy wykorzystaniu oprogramowania DADISP. Przewidywanie prędkości drgań cząstek odbywa się w oparciu o skalowanie odległości oraz metody hybrydowe Simulated Annealing (S.A.). W wyniku skalowania odległości otrzymujemy wzorów na prędkość drgań cząstek, przy wykorzystaniu metod hybrydowych dokładność obliczeń wzrasta do 0.94. Wykorzystując wysoki stopień korelacji wynikający ze wzoru, uwzględniając minimalną odległość 56.2 m od epicentrum wybuchu oraz dozwolony poziom prędkości drgań cząstek gruntu 178 mm/s (dla dwudniowego betonu), otrzymujemy maksymalną wielkość ładunku na pojedynczy wystrzał na poziomie 212 Kg.

Keywords : Blasting; Ground Vibration; Peak Particle Velocity; Simulated annealing algorithm

Słowa kluczowe : prace strzałowe; drgania podłoża; maksymalną prędkość drgań cząstek (PPV); algorytm hybrydowy

  • Aarts E., Korst J., 1989. Simulated Annealing and Boltzman Machines. 235-250. Google Scholar

  • Azimi A., Khoshrou S.H., Osanloo M., Sadeghee A., 2010. Seismic wave monitoring and ground vibration analysis forbench blasting in Sungun open pit copper mine. In: S. (ed), Rock Fragmentation by Blasting (pp. 561-570). London: Taylor & Francis Group. Google Scholar

  • Bahadori M., Bakhshandeh Amnieh H., 2010. Prediction of blasting vibration in Sarcheshmeh copper mine using GA algorithm. In: S.H. Khoshrou (Ed.), Proceeding of the First Iranian Applied Blasting Confrence (pp. 237-244). Tehran: Amirkabir Univercity of Technology. Google Scholar

  • Bakhshandeh Amnieh H., Mozdianfard M.R., Siamaki A., 2009. Predicting of blasting vibrations in Sarcheshmeh coppermine by neural network. Safety Science, 48, 319-325. Web of ScienceGoogle Scholar

  • Blair D.P., Jiang J.J., 1995. Surface Vibration due to a Vertical Column of Explosive [J]. Int. J. Rock Mech. Min. Sci. & Geomech., 32, 149-154.CrossrefGoogle Scholar

  • Duval W.I., Atchison T.C., 1959. Rock Breakage with Confined Concentrated Charges. Mining Engineering, 11, 605-611. Google Scholar

  • Hagan T.N., Kennedy B.J., 1980. The Design of Blasting Procedures to Ensure Acceptable Noise, Air Blast and GroundVibrations in Surface Coal Mining. Environmental Controls for Coal Mining (First National Seminar). Google Scholar

  • Hashash Y.M., Hook J.J., Schmidt B., Yao J.I., 2001. Seismic behavior of underground structures and site response. Tunnelling and Underground Space Technology, 16, 247-293. Google Scholar

  • Jimeno C.L., Jimeno E.L., Carcedo F.J., 1995. Drilling and Blasting of Rocks. Geomining Technological Institute of Spain, Spain: Balkema, Rotterdam. Google Scholar

  • Khandelwal M., Singh T.N., 2007. Evaluation of blast-induced ground vibration predictors. Soil Dyn. Earth quake Eng., 27, 25-116. Google Scholar

  • Khandelwal M., Singh T.N., 2009. Prediction of blast-induced ground vibration using artificial neural network. International Journal of Rock Mechanics & Mining Sciences , 46, 1214-1222. Web of ScienceGoogle Scholar

  • Khandelwal M., Singh T.N., Kumar S., 2005. Prediction of blast-induced ground vibration in opencast mine by artificialneural network. Ind. Min. Eng. J., 44, 9-23. Google Scholar

  • Konya C.J., Walter E.L., 1985. Rock Blasting. Virginia: National Technical Information Service: Springfield. Google Scholar

  • Langefors U., Kihlstrom B., 1978. The Modern Technique of Rock blasting. New York: John Wiley and Sons. Google Scholar

  • Lee K., Elsharkawi M., 2006. Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems. Wiley, 123-146. Google Scholar

  • Lucca F.J., Terra L.L., 2003. Tight construction blasting: ground vibration basics. Google Scholar

  • Mather W., 1984. Factors Affecting magnitude and Frequency of Blast-Induced Ground and Air Vibrations. Transactions of the Institution of Mining and Metallurgy, 93, 173-180. Google Scholar

  • Olofsson S.O., 1998. Applied Explosive Technology for Construction and Mining. APPLEX. Google Scholar

  • Oriard L.L., 1980. Observations on the Performance on Concrete at High Stress Levels from Blasting. Proceedings of the Sixth Conference on Explosives and Blasting Technique (pp. 1-10). International society of Explosives Engineers.Google Scholar

  • Pal Roy P., 1998. Charactristics of Ground Vibration and Structure to Surface and Underground Blasting. Geotechnical and Geological Engineering. Google Scholar

  • Rao S.Y., Rao M.K., 2009. Prediction of Ground Vibrations and Frequency in opencast mine unig neuro-fuzzy technique. Journal of Science & Industrial Research, 68, 292-295. Google Scholar

  • Retrieved from Structures. (n.d.). Retrieved from Dictionary of algorithms and data: http://www.nist.gov/dads/. Google Scholar

  • Rock blasting technique. 1998. NTNU department of building construction project report. Google Scholar

  • Singh T.N., Kanchan R., Saigal K., Verma A.K., 2004. Prediction of P-wave velocity and anisotropic properties of rockusing artificial neural networks technique. J. Sci. Ind. Res., 63, 8-32. Google Scholar

  • Soltatni S., Bakhshandeh-Amnieh H., Bahadori M., 2011. Predicting ground vibration caused by blasting operations inSarcheshmeh copper mine considering the charge type by Adaptive Neuro-Fuzzy Inference System (ANFIS). Archieves of Mining Science, Vol. 56, No 4, p. 701-710. Google Scholar

  • U.S. Army Corps of Engineers. 1972. Systematic Drilling and Blasting for Surface Excavation. Engineer Manual. Google Scholar

  • U.S. Army Corps of Engineers. 1995. Causes of distress and deterioration of concrete. Engineer Manual. Web of ScienceGoogle Scholar

  • U.S. Army Corps of Engineers. 1997. Construction of tunnels and shafts. Engineer Manual. Google Scholar

  • Van Groenigen J.W., Siderius W., Stein A., 1999. Constrained Optimization of Soil Sampling for Minimization of theKriging Variance. Geoderma, 87, 239-259. Google Scholar

  • Van Gorenigen J.W., Stein A., 1999. Spatial simulated annealing for constrained optimization of spatial sampling schemes. Journal of Environmental Quality, 27, 1078-1086.Google Scholar

About the article

Published Online: 2012-11-22

Published in Print: 2012-12-01


Citation Information: Archives of Mining Sciences, Volume 57, Issue 3, Pages 687–697, ISSN (Print) 0860-7001, DOI: https://doi.org/10.2478/v10267-012-0044-z.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Comments (0)

Please log in or register to comment.
Log in