Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Open Access
Online
ISSN
1689-0469
See all formats and pricing
More options …

A Universal Model to Predict Roadheaders’ Cutting Performance / Uniwersalny Model Do Prognozowania Postępu Prac Kombajnów Do Drążenia Tuneli

Arash Ebrahimabadi / Kamran Goshtasbi / Kourosh Shahriar
  • DEPARTMENT OF MINING, METALLURGICAL AND PETROLEUM ENGINEERING, AMIRKABIR UNIVERSITY OF TECHNOLOGY, TEHRAN, IRAN
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Masoud Cheraghi Seifabad
Published Online: 2013-01-29 | DOI: https://doi.org/10.2478/v10267-012-0067-5

Abstract

The paper intends to generate a universal model to predict the performance of roadheaders for all kinds of rock formations. In this regard, we first take into account the outcomes of previous attempts to explore the performance of roadheaders in Tabas Coal Mine project (the largest and fully mechanized coal mine in Iran). During those investigations, rock mass brittleness index (RMBI) was defined in order to relate the intact and rock mass characteristics to machine performance. The statistical analysis of data acquired from Tabas field demonstrated that RMBI was highly correlated to instantaneous cutting rate (ICR) of roadheaders (R² = 0.92). With the aim to construct a universal model for predicting the roadheader performance, we have now tried to establish a database consisting measured cutting rate of roadheaders as well as the data gathered from field studies of Tabas Coal Mine project and Besiktas, Kurucesme, Baltalimani, Eyup and Halic tunnels in Turkey. A broad modeling and analysis found a fair relationship, resulting in a new universal predictive model to predict the cutting rate of roadheaders with correlation of 0.73 (R² = 0.73). The application of local and universal models at Tabas Coal Mine showed a remarkable difference between measured and predicted ICR. The mean relative error of 0.359% was found with universal model but it represented lower value (mean relative error of 0.100%) while using local model. It can thus be concluded that instead of generating a universal model, separate localized models for different ground and machine conditions should be developed to improve the accuracy and reliability of the performance prediction models.

Abstract

W pracy podjęto próbę opracowania uniwersalnego modelu do prognozowania postępu prac kombajnów do drążenia tuneli we wszystkich rodzajach skał. W pierwszym etapie przeprowadzono analizę wyników badań w tym zakresie prowadzonych uprzednio w kopalni węgla Tabas (jest to największa i w pełni zmechanizowana kopalnia węgla w Iranie). W ramach badań zdefiniowano współczynnik kruchości skał (RMBI) w celu określenia zależności pomiędzy właściwościami nienaruszonych warstw skalnych a postępami pracy kombajnów. Analiza statystyczna danych uzyskanych w kopalni Tabas wykazała wysoki poziom korelacji pomiędzy wskaźnikiem RMBI a chwilową prędkością urabiania (ISC) kombajnów do drążenia tuneli (R2 = 0.92). Mając na celu opracowanie uniwersalnego modelu do prognozowania postępu prac kombajnów do drążenia tuneli, autorzy podjęli najpierw próbę stworzenia bazy danych obejmującej zmierzone prędkości urabiania oraz dane uzyskane w trakcie badań polowych w kopalni węgla Tabas, oraz z projektu drążenia tuneli w kopalniach w Besiktas, Kurucesme, Baltalimani, Eyup i Halic w Turcji. W wyniku modelowania i analiz znaleziono w miarę dokładną zależność, prowadzącą do stworzenia uniwersalnego modelu prognozowania prędkości urabiania przy użyciu kombajnów do drążenia tuneli, przy poziomie korelacji 0.73 (R2 = 0.73). Zastosowanie lokalnego i uniwersalnego modelu w kopalni węgla Tabas wykazało znaczne różnice pomiędzy mierzoną a prognozowaną chwilową prędkością urabiania. Średni błąd względny dla modelu uniwersalnego wyniósł 0.359%, w przypadku modelu lokalnego średni błąd względny był na poziomie 0.100%. Stąd też należy wnioskować, że dla poprawy wiarygodności i dokładności prognozowania zamiast tworzenia uniwersalnego modelu, zasadne jest opracowanie odrębnych modeli „lokalnych” uwzględniających konkretne uwarunkowania gruntowe oraz sprzętowe.

Keywords : performance prediction; roadheader; tunneling; Rock Mass Brittleness Index; Tabas Coal Mine

Słowa kluczowe : prognozowanie postępu prac; maszyna do drążenia tuneli; drążenie tuneli; wskaźnik kruchości skał; kopalnia węgla w Tabas

  • Bilgin N., Seyrek T., Shahriar K., 1988. Roadheader performance in Istanbul, Golden Horn clean-up contributes valuable data. Tunnels and Tunnelling, June, 41-44.Google Scholar

  • Bilgin N., Seyrek T., Erdinc E., Shahriar K., 1990. Roadheaders glean valuable tips for Istanbul Metro. Tunnels and Tunnelling, October, 29-32.Google Scholar

  • Bilgin N., Yazici S., Eskikaya S., 1996. A model to predict the performance of roadheaders and impact hammers in tunnel drivages. Proceedings of Eurock ’96, Balkema, 715-720.Google Scholar

  • Bilgin N., Kuzu C., Eskikaya S., 1997. Cutting performance of rock hammers and roadheaders in Istanbul Metro drivages. Proceedings of the Word Tunnel Congress’97, Tunnels for People, Balkema, 455-460.Google Scholar

  • Bilgin N., Dincer T., Copur H., Erdogan M., 2004. Some geological and geotechnical factors affecting the performance of a roadheader in an inclined tunnel. Tunnelling and Underground Space Technology, Vol. 19, 629-636.Google Scholar

  • Copur H., Rostami J., Ozdemir L., Bilgin N., 1997. Studies on performance prediction of roadheaders. Proceedings of the 4th International Symposium on Mine Mechanization and Automation, Brisbane, Qld., Australia, A4-1-A4-7.Google Scholar

  • Copur H., Ozdemir L., Rostami J., 1998. Roadheader applications in mining and tunneling. Mining Engineering, Vol. 50, 38-42.Google Scholar

  • Douglas W., 1985. Roadheaders open new horizons at San Manuel. Engineering and Mining Journal, Vol. 186, 22-25.Google Scholar

  • DOSCO Overseas Engineering Ltd, Newark Nottinghamshire, England, www.dosco.co.uk, 2008.Google Scholar

  • Ebrahimabadi A., 2010. A model to predict the performance of roadheaders in tunneling. Ph.D. Thesis, Azad University, Science and Research Branch, Tehran, Iran (Unpublished).Google Scholar

  • Ebrahimabadi A., Goshtasbi K., Shahriar K., Cheraghi Seifabad M., 2011. A model to predict the performance of roadheaders based on rock mass brittleness index. Journal of the South African Institute of Mining and Metallurgy, Vol. 111, No. 5, 355-364.Google Scholar

  • Ebrahimabadi A., Goshtasbi K., Shahriar K., Cheraghi Seifabad M., 2011. Predictive models for roadheader’s cutting performance in coal measure rocks. Yerbilimleri, Vol. 32, No. 2, 89-104.Google Scholar

  • Gehring K.H., 1989. A cutting comparison. Tunnels and Tunnelling, November, 27-30.Google Scholar

  • Jaszczuk M., Kania J., 2008. Coal production costs components and coal price as crucial factors in the designation of coal output. Archives of Mining Sciences, Vol. 53, No. 2, 183-214.Google Scholar

  • McFeat-Smith I., Fowell R.J., 1977. Correlation of rock properties and the cutting performance of tunnelling machines. Conference on Rock Engineering, UK, organized jointly by the British Geotechnical Society and Department of Mining Engineering, The University of Newcastle Upon Tyne, 581-602.Google Scholar

  • McFeat-Smith I., Fowell R.J., 1979. The selection and application of roadheaders for rock tunneling. Proceedings of the Rapid Excavation and Tunnelling Conference, Atlanta, Vol. 1, 261-279.Google Scholar

  • Rostami J., Ozdemir L., Neil D.M., 1994. Performance prediction: a key issue in mechanical hard rock mining. Mining Engineering, November, 1263-1267.Google Scholar

  • Rostami J., Ozdemir L., 1996. Modeling for design and performance analysis of mechanical excavators. Proceedings of the Conference on Mechanical Excavation’s Future Role in Mining, World Rock Boring Association, Sudbury, Ont., Canada, September, 17-19.Google Scholar

  • Sandbak L.A., 1985. Roadheader drift excavation and geomechanical rock classification at San Manuel, Arizona. Proceedings of the Rapid Excavation and Tunnelling Conference, New York, Vol. 2, 902-916 (Chapter 54).Google Scholar

  • Thuro K., Plinninger R.J., 1999. Predicting roadheader advance rates. Tunnels and Tunnelling, Vol. 31, 36-39.Google Scholar

About the article

Published Online: 2013-01-29

Published in Print: 2012-12-01


Citation Information: Archives of Mining Sciences, Volume 57, Issue 4, Pages 1015–1026, ISSN (Print) 0860-7001, DOI: https://doi.org/10.2478/v10267-012-0067-5.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yang Yang, Guowei Li, and Aihui Yuan
Mathematical Problems in Engineering, 2017, Volume 2017, Page 1
[2]
Qianqian Zhang, Zhennan Han, Mengqi Zhang, and Jianguang Zhang
KSCE Journal of Civil Engineering, 2017, Volume 21, Number 1, Page 168

Comments (0)

Please log in or register to comment.
Log in