Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Open Access
Online
ISSN
1689-0469
See all formats and pricing
More options …

Application of Number-Size (N-S) Fractal Model to Quantify of the Vertical Distributions of Cu and Mo in Nowchun Porphyry Deposit (Kerman, Se Iran) / Zastosowanie modelu fraktalnego n-s (liczba-rozmiar) do ilościowego określenia pionowego rozkładu Cu i Mo w złożu porfirowym (Kerman, Iran)

Lili Daneshvar Saein / Iraj Rasa / Nematolah Rashidnejad Omran / Parviz Moarefvand / Peyman Afzal / Behnam Sadeghi
Published Online: 2013-04-30 | DOI: https://doi.org/10.2478/amsc-2013-0006

Determination of the vertical distribution of geochemical elemental concentrations is of fundamental importance in mineral exploration. In this paper, eight mineralized boreholes from the Nowchun Cu-Mo porphyry deposit, SE Iran, were used to identify of the vertical distribution directional properties of Cu and Mo values using number-size (N-S) fractal model. The vertical distributions of Cu and Mo in the mineralized boreholes show a positively skewed distribution in the former and a multimodal distribution in the latter types. Elemental threshold values for the mineralized boreholes were computed by fractal model and compared with the statistical methods based on the data obtained from chemical analysis of samples. Elemental distributions are not normal in these boreholes and their median equal to Cu and Mo thresholds. The results of N-S fractal analysis reveal that Cu and Mo values in mineralized boreholes are multifractals in nature. There are at least three geochemical populations for Cu and Mo in the boreholes and Cu and Mo thresholds have ranges between 0.07%-0.3% and 50-200 ppm, respectively. The results obtained by N-S fractal model were compared with geological observations in the boreholes. Major Cu and Mo enrichment correlated by monzonitic rocks and high amounts of observed Cu and Mo ores (Chalcopyrite and molybdenite) in the boreholes.

Określenie pionowego rozkładu stężenia danych pierwiastków chemicznych ma podstawowe znaczenie w trakcie prac poszukiwawczych. W artykule wykorzystano dane z ośmiu otworów w porfirytowym złożu Cu-Mo w Nowchum, w południowo-wschodnim Iranie, dla określenia pionowego rozkładu kierunkowych właściwości i poziomu zawartości Cu i Mo z wykorzystaniem modelu fraktalnego (N-S). Rozkłady pionowe Cu i Mo w otworach wykazują skośną orientację (Cu) i rozkład multimodalny dla Mo. Wartości progowe pierwiastków w otworach obliczono na podstawie modelu fraktalnego i porównano z wynikami uzyskanymi przy użyciu metod statystycznych w oparciu o wyniki analizy chemicznej próbek. Rozkłady wartości pierwiastków w tych otworach nie są rozkładami normalnymi, a ich mediany równe są wartościom progowym dla Cu i Mo. Wyniki analizy fraktalnej wykazują, że wartości Cu i Mo w otworach mają charakter multifraktalny. Mamy do czynienia z co najmniej trzema geochemicznymi populacjami Cu i Mo w otworach a wartości progowe Cu i Mo wahają się w granicach 0.07-0.3% (50-200 ppm). Wyniki uzyskane przy pomocy modelu fraktalnego N-S zostały porównane z wynikami obserwacji geologicznych poczynionych w otworze. Wysokie poziomy wzbogacenia w Cu i Mo skorelowane są z obecnością skał monzonitycznych i wysokimi ilościami rud bogatych w Cu i Mo (chalkopiryt, molibdenit) w otworach.

Keywords : Number-size (N-S) fractal model; Nowchun; Cu-Mo porphyry deposit; Borehole; Iran

Słowa kluczowe : model fraktalny N-S (liczba- rozmiar); Nowchun; złoże porfirytowe Cu i Mo; otwór; Iran

  • Agterberg F.P., Cheng Q., Wright D.F., 1993. Fractal modeling of mineral deposits, In: J. Elbrond and X. Tang (Editors). 24th APCOM symposium proceeding, Montreal, Canada, p. 43-53.Google Scholar

  • Agterberg F.P., 1995. Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review 37, 1-8.Google Scholar

  • Afzal P., Khakzad A., Moarefvand P., Rashidnejad Omran N., Esfandiari B., Fadakar Alghalandis Y., 2010a. Geochemicalanomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. Journal of Geochemical Exploration 104, 34-46.Web of ScienceGoogle Scholar

  • Afzal P., Fadakar Alghalandis Y., Khakzad A., Moarefvand P., Rashidnejad Omran N., 2010b. Application of PowerSpectrum-Area Fractal Model to Separate Anomalies from Background in Kahang Cu-Mo Porphyry Deposit, CentralIran. Archives of Mining sciences 55, 3, 389-401.Google Scholar

  • Afzal P., Fadakar Alghalandis Y., Khakzad A., Moarefvand P., Rashidnejad Omran N., 2011. Delineation of mineralizationzones in porphyry Cu deposits by fractal concentration-volume modelling. Journal of Geochemical Exploration (108) 220-232.CrossrefWeb of ScienceGoogle Scholar

  • Ahrens L.H., 1954a. The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary). Geochimica Cosmochimica Acta 5, 49-73.Google Scholar

  • Ahrens L.H., 1954b. The lognormal distribution of the elements II. Geochimica Cosmochimica Acta 6, 121-131.CrossrefGoogle Scholar

  • Ahrens L.H., 1966. Element distributions in specific igneous rocks-VIII. Geochimica Cosmochimica Acta 30, 109-122.Google Scholar

  • Alavi M., 1994. Tectonics of Zagros Orogenic belt of Iran, new data and interpretation. Tectonophysics 229, 211-238.Google Scholar

  • Alavi M., 2004. Regional stratigraphy of the Zagros folded-thrust belt of Iran and its proforeland evolution. American Journal of Science 304, 1-20.Google Scholar

  • Atapour H., Aftabi A., 2007. The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit,Rafsanjan, Kerman, Iran: Implications for exploration and the environment. Journal of Geochemical Exploration 93 (1), 47-65.Web of ScienceGoogle Scholar

  • Bai J., Porwal A., Hart C., Ford A., Yu L., 2010. Mapping geochemical singularity using multifractal analysis: Applicationto anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. Journal of Geochernical Exploration 104, 1-11.Google Scholar

  • BEOGRAD-Yugoslavia, 1972. Explorations for copper in Nowchon area institute Geological and mining exploration/ National Iranian Copper Industries Co. (NICICO), 286 p.Google Scholar

  • Berberian M., King G.C.P., 1981. Towards a palaeogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210-265.CrossrefGoogle Scholar

  • Bolviken B., Stokke P.R., Feder J., Jossang T., 1992. The fractal nature of geochemical landscapes. Journal of Geochernical Exploration 43, 91-109.Google Scholar

  • Boomeri M., Nakashima K., Lentz D.R., 2009. The Miduk porphyry Cu deposit, Kerman, Iran: A geochemical analysisof the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration 103 (1), 17-19.Web of ScienceGoogle Scholar

  • Cheng Q., Agterberg F.P., Ballantyne S.B., 1994. The separation of geochemical anomalies from background by fractalmethods. Journal of Geochemical Exploration. 51, 109-130.Google Scholar

  • Dargahi S., Arvin M., Pan Y., Babaei A., 2010. Petrogenesis of Post-Collisional A-type granitoid from the Urumieh-Dokhtar magmatic assemblage, Southwestern Kerman, Iran: Constraints on the Arabian-Eurasian continentalcollision, Lithos 115, 190-204.Web of ScienceGoogle Scholar

  • Deng J., Wang Q., Yang L., Wang Y., Gong Q., Liu H., 2010. Delineation and explanation of geochemical anomaliesusing fractal models in the Heqing area, Yunnan Province, China Garrett R.G., 1993, The Management, Analysis and Display of Exploration Geochemical Data, GSC Open File 2390. Geological Survey of Canada, pp. 9-1 to 9-41.Google Scholar

  • Harris J.R., Grunsky E.C., Wilkinson L., 1997. Developments in the Effective Use and Interpretation of Lithogeochemistryin Regional Exploration Programs: Application of GIS Technology, Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration, p. 285-292.Google Scholar

  • Hawkes R., A.W., Webb, H.E., 1979. Geochemistry in Mineral Exploration. (2nd edition),. Academic Press, New York, 657 pp.Google Scholar

  • Levinson A.A., 1974. Introduction of Exploration Geochemistry. Calgary: Applied Publishing Company, 608 p.Google Scholar

  • Li C., Ma T., Shi J., 2003. Application of a fractal method relating concentrations and distances for separation of geochemicalanomalies from background. Journal of Geochemical Exploration 77, 167-175.Google Scholar

  • Mandelbrot B.B., 1983. The Fractal Geometry of Nature: W. H. Freeman. San Fransisco, 468 pp.Google Scholar

  • Monecke T., Gemmell J.B., Monecke J., 2001. Fractal distributions of veins in drill core from the Hellyer VHMS deposit, Australia: constraints on the origin and evolution of the mineralising system. Mineralium Deposita 36, 406-415.Google Scholar

  • Monecke T., Monecke J., Herzi, P.M., Gemmell J.B., Monch W., 2005. Truncated fractal frequency distribution ofelement abundance data: A dynamic model for the metasomatic enrichment of base and precious metals. Earth and Planetary Science Letters 232, 363-378.Google Scholar

  • Razumovsky N., 1940. Distribution of metal values in ore deposits. Comptes Rendus (Doklady). de l’Académie des Sciences de l’URSS 9: 814-816.Google Scholar

  • Reimann C., Filzmoser P., Garrett R.G., 2005. Background and threshold: critical comparison of methods of determination. Sci. Total Environ. 346, 1-16.Google Scholar

  • Sanderson D.J., Roberts S., Gumiel P., 1994. A Fractal relationship between vein thickness and gold grade in drill corefrom La Codosera, Spain. Economic Geology 89, 168-173.Google Scholar

  • Shahabpour J., 1994. Post-mineral breccia dyke from the Sar-Cheshmeh porphyry copper deposit, Kerman, Iran. Exploration and Mining Geology 3, 39-43.Google Scholar

  • Tukey J. W., 1977. Exploratory Data Analysis. Addison-Wesley, Reading, MA, 688 p.Google Scholar

  • Turcotte D. L., 1989. Fractals in geology and geophysics. Pure and applied Geophysics 131 (1), 171-196.Google Scholar

  • Turcotte D.L., 1996. Fractals and Chaos in Geophysics, 2nd ed. Cambridge University Press, Cambridge UK, 81-99.Google Scholar

  • Turcotte D.L., 2002. Fractals in petrology. Lithos 65, 261-271.Google Scholar

  • Wang Q.F., Deng J., Liu H., Yang L.Q., Wan L., Zhang R.Z., 2010. Fractal models for ore reserve estimation. Ore Geology Reviews 37, 2-14.CrossrefWeb of ScienceGoogle Scholar

  • Wang Q.F., Deng J., Liu H., Wang Y., Sun X., Wan L., 2011. Fractal models for estimating local reserves with differentmineralization qualities and spatial variations. Journal of Geochemical Exploration. 108, 196-208.Web of ScienceGoogle Scholar

  • Zhao J., Chen S., Zuo R., Carranza E.M.J., 2011. Mapping complexity of spatial distribution of faults using fractaland multifractal models: vectoring towards exploration targets. Computers & Geosciences, doi:10.1016/j.cageo. 2011.04.007CrossrefWeb of ScienceGoogle Scholar

  • Zuo R., Cheng Q., Xia Q., 2009. Application of fractal models to characterization of vertical distribution of geochemicalelement concentration. Journal of Geochemical Exploration, 102 (1), 37-43.Google Scholar

  • Zuo R., 2011a. Identifying Geochemical Anomalies Associated with Cu and Pb-Zn Skarn Mineralization Using PrincipalComponent Analysis and Spectrum-Area Fractal Modelling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration 111, 13-22Web of ScienceGoogle Scholar

  • Zuo R., 2011b. Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Applied Geochemistry 26, 271-273.Web of ScienceGoogle Scholar

About the article

Published Online: 2013-04-30

Published in Print: 2013-03-01


Citation Information: Archives of Mining Sciences, Volume 58, Issue 1, Pages 89–105, ISSN (Print) 0860-7001, DOI: https://doi.org/10.2478/amsc-2013-0006.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in