Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Open Access
See all formats and pricing
More options …

A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR


Rodoljub D. Stanojlović / Jovica M. Sokolović
Published Online: 2014-10-20 | DOI: https://doi.org/10.2478/amsc-2014-0057


In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated.

By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag.

The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.

W pracy badano wpływ mieszanin żużla miedziowego i odpadów poflotacyjnych w kopalni miedzi Bor na efektywnosc odzysku miedzi na drodze flotacji oraz parametry kinetyki flotacji w urządzeniu do flotacji pracującego w trybie cyklicznym.

Poprzez równoczesne wprowadzenie starych odpadów poflotacyjnych rozdrobnionych w młynie kulowym w ilości 9%, możliwe jest podniesienie poziomu odzysku miedzi o około 20%. Wyniki te porównać można z poziomem odzysku miedzi z czystego żużla.

Wyniki badah flotacji porcji wsadu zostały dopasowane przy użyciu oprogramowania MatLab do modelowania kinetyki flotacji (model pierwszego rzędu) w celu określenia parametrów kinetycznych i dla zdefiniowania optymalnego modelu kinetyki procesu flotacji. Przebadano szesc modeli kinetyki, analizując wielkosc odzysku miedzi ze wsadu w stosunku do czasu flotacji. Wszystkie modele wykazywały duzą korelację, a najlepsze dopasowanie wykazywał zmodyfikowany model Kelsalla.

Keywords: copper slag; flotation tailings; flotation kinetics; first-order; model; MatLab

Słowa kluczowe:: żużel miedziowy; odpady poflotacyjne; kinetyka flotacji; model pierwszego rzędu; MatLab


  • Agar G. E., Chia J., Requis C. L., 1998. Flotation rate measurements to optimize an operating circuit. Min. Eng., 11 (4), p. 347-360.CrossrefGoogle Scholar

  • Ahmed I. B., Gbor P. K., JI C. Q., 2000. Aqueous sulfur dioxide leaching of Cu, Ni, Co, Zn, and Fe from smelter slag in the absence of oxygen. Can. J. Chem. Eng., 78 (4), p. 694-703.CrossrefGoogle Scholar

  • Altundogan H. S, Tumen F., 1997. Metal recovery from copper converter slag by roasting with ferric sulfate. Hydrome-tallurgy, 44 (1-2), p. 261-267.Google Scholar

  • Arslan C., Arslan F., 2002. Recovery of copper, cobalt, and zinc from copper smelter and converter slags. Hydrometal-lurgy, 67, p. 1-7.Google Scholar

  • Banza A. N., Gock E., Kongolo K., 2002. Base metals recovery from copper smelter slag by oxidizing leaching and solvent extraction. Hydrometallurgy, 67, p. 63-69. Barnes C. D., Lumsdaine J., O’Hare S. M., 1993. Copper converter slag treatment at Mount Isa Mines Limited, Mount Isa, Qld. In: AusIMM Proceedings, 298 (1), p. 31. Barrios M., 1991. Study of flotation of slags. Oficina Minera Osvaldo Martinez, Taltal, Chile.CrossrefGoogle Scholar

  • Bota G., Gican I., Poputa G., 1995. The beneficiation of the non-ferrous metals from secondary resources at regia autonoma a Cuprului Deva-Romaina. [In:] Krstev, B. & Golomeov, B. (Eds.): Proceedings of 6th Balkan Mineral Processing Symposium, Ohrid, Macedonia, p. 426-431.Google Scholar

  • Brezani I., Zelenak F., 2010. MatLab tool for modeling first order flotation. http://www.mathworks.com/matlabcentral/ fx_files/28703/2/content/html/Flotation_modeling.html.Google Scholar

  • Brożek M., Młynarczykowska A., Turno A., 2003. The relationships between deterministic and stochastic models of flotation. Arch. Min. Sci., Vol. 48, No 3, p. 299-314.Google Scholar

  • Brożek M., Młynarczykowska A., 2006. Application of the stochastic model for analysis of flotation kinetics with coal as an example. Physicochem. Probl. Miner. Process., Vol. 40, p. 31-44.Google Scholar

  • Brożek M., Młynarczykowska A., 2007. Analysis of kinetics models of batch flotation. Physicochem. Probl. Miner. Process., Vol. 41, p. 51-65.Google Scholar

  • Brożek M., Młynarczykowska A., 2010. Probability of detachment of particle determined according to the stochastic model of flotation kinetics. Physicochem. Probl. Miner. Process., Vol. 44, p. 23-34.Google Scholar

  • Bruckard W. J., Somerville M., Hao F., 2004. The recovery of copper, by flotation, from calcium-ferrite-based slags made in continuous pilot plant smelting trials. Miner. Eng., 17, p. 495-504.CrossrefGoogle Scholar

  • Bulut G., 2006. Recovery of copper and cobalt from ancient slag. Waste Manage. Res., 24, p. 118-124.CrossrefGoogle Scholar

  • Cilek E. C., 2004. Estimation of flotation kinetic parameters by considering interactions of the operating variables. Miner. Eng., 17 (1), p. 81-85.CrossrefGoogle Scholar

  • Das B., Mishra B. K., Angadi S., Pradhan S. K., Prakash S., Mohanty J., 2010. Characterization and recovery of copper values from discarded slag. Waste Manage. Res., 28 (6), p. 561-567.CrossrefGoogle Scholar

  • Demetrio S., Ahumada J., Duran A., Mast E., Rojas U., Sanhueza J., Reyes P., Morales E., 2000. Slag cleaning: The Chilean copper smelter expirence. JOM, 52 (8), p. 20-25.CrossrefGoogle Scholar

  • Dowling E. C., Klimpel R. R, Aplan F. F., 1985. Model discrimination in the flotation of a porphyry copper ore. Miner. Metall., 2 (2, p. 87-101.Google Scholar

  • Gorai B., Jana R., Premchand K., 2003. Characteristics and utilisation of copper slag — a review. Resour. Conserv. Recy., 39, p. 299-313.CrossrefGoogle Scholar

  • Gul A., Bulut G., Kangal O., Önal G., 2003. Benefication of ancient copper slags. In: Proceedings of X Balkan Mineral Processing Congress, Varna, Bulgaria, Sofia, p. 831-836.Google Scholar

  • Harris C. C., Chakravarti A., 1970. Semi-batch flotation kinetics: species distribution analysis. Trans. AIME, 247, p. 162-172.Google Scholar

  • Herreros O., Quiroz R., Manzano E., Bou C., Vinals J., 1998. Copper extraction from reverberatory and flash furnace slags by chlorine leaching. Hydrometallurgy, 49, p. 87-101.CrossrefGoogle Scholar

  • Imaizumi T., Inoue T., 1965. Kinetic consideration of froth flotation. In: Proceedings of 6th International Mineral Processing Congres, Cannes, p. 563-579.Google Scholar

  • Imaizumi T., Inoue T., 1968. Some aspects of flotation kinetics. In: Proceedings of 8th International Mineral Processing Congres, Leningrad, p. S-15.Google Scholar

  • Jameson C. J., Nam S., Young M. M., 1977. Physical factors affecting recovery rates in flotation. Miner. Sci. Eng., 9 (3), p. 103-118.Google Scholar

  • Jia C. Q., Xiao J. Z., Orr R. G., 1999. Behavior of metals in discard nickel smelting slag upon reacting with sulfuric acid. J. Environ. Sci. Heal. A. 34 (5), p. 1013-1034.CrossrefGoogle Scholar

  • Jowett A., 1974. Resolution of flotation recovery curves by a differential plot method. Trans. Inst. Min. Metall., 85, p. C263-C266.Google Scholar

  • Kalinowski K., Kaula R., 1995. Transport delay in a mathematical models of batch coal flotation kinetics. Arch. Min. Sci., Vol. 40, p. 339-349.Google Scholar

  • Kalinowski K., Kaula R., 2013. Verification of flotation kinetics model for triangular distribution of density function of flotability of coal particles. Arch. Min. Sci., Vol. 58, 4, p. 1279-1287.Google Scholar

  • Kelsall D. F., 1961. Application of probability assessment of flotation systems. T. Am. I. Min. Met. Eng, 70, p. 191-204.Google Scholar

  • Klimpel R. R., 1980. Selection of chemical reagents for flotation. In: Mular A., Bhappu R. Eds., Mineral Processing Plant Design, 2nd edn. AIME, New York, p. 907-934.Google Scholar

  • Kongolo K., Mwema M. D., Banza A N., Gock E., 2003. Cobalt and zinc recovery from copper sulphate solution by solvent extraction. Miner. Eng. 16, p.1371-1374.CrossrefGoogle Scholar

  • Kracht W., Vallebuona G., Casali A., 2005. Rate constant modeling for batch flotation, as a function of gas dispersion properties. Miner. Eng., 18 (11), p. 1067-1076.CrossrefGoogle Scholar

  • Loveday B. K., 1966. Analysis of froth flotation kinetics. Trans. IMM, 75: p. C219-C225.Google Scholar

  • Nishkov I., Grigorova I., 2009. Practical experience and education of waste recycling and sustainable development in Bulgaria. In: Proceedings of 4th Symposium Recycling technologies and sustainable development, Kladovo, Serbia, p. 54-63.Google Scholar

  • Oliveira J. F., Saraiva S. M., Pimenta J. S., Oliveira A. P. A., 2001. Kinetics of pyrochlore flotation from Arax mineral deposits. Miner. Eng. 14 (1), p. 99-105.CrossrefGoogle Scholar

  • Osborn G. A., Garner F. A., Veasey T. J., 1986. Recovery of metal values from secondary copper slags. In: Proceedings of the 1st International Mineral Processing Symposium, Izmir, Turkey, p. 46-64.Google Scholar

  • Sarrafi A., Rahmati B., Hassani H. R., Shirazi H. H. A., 2003. Recovery of copper from reverberatory furnace slag by flotation (technical note). Miner. Eng. 17: p. 457-459.Google Scholar

  • Shen H., Forssberg E., 2003. An overview of recovery of metals from slags. Waste Manage., 23, p. 933-949.CrossrefGoogle Scholar

  • Sokolovic J., Stanojlovic R., Barbulovic B., Markovic Z. S., Stirbanovic Z., 2007. Analysis of state pollution on environmental in RTB Bor. In: Proceedings of XV Ecological Truth 2007, Sokobanja, Serbia, p.174-180.Google Scholar

  • Sokolovic J., Stanojlovic R., Markovic Z., 2012. The effects ofpretreatment on the flotation kinetics of waste coal. Int. J. Coal Prep. Util., 32 (3), p. 130-142.CrossrefGoogle Scholar

  • Stanojlovic R., Stankovic Z., Markovic Z. S., Antic D., Sokolovic J., Trujic D., Milovanovic S., Stefanovic T., Sukletovic P., Nikolic M., 2002. The study of techno-Economic Justification for Processing Smelter Slag in Existing Technological Process. The Study, University of Belgrade, Technical faculty in Bor, Serbian Edition.Google Scholar

  • Stanojlovic R., Stirbanovic Z., Sokolovic J., 2008. Wastefree technology for processing smelter slag from Bor Copper Mine. J. Min. Metall. Sect. A, 44 (1), p.44-50.Google Scholar

  • Stanojlovic R., Sokolovic J., 2011. Smelting slag - Production and processing of copper slag from Smelter in Bor. The Monographs, University of Belgrade, Technical Faculty in Bor, Bor, Serbia.Google Scholar

  • Stanojlovic R., Stirbanovic Z., Sokolovic J., 2012. New technological procedure for sustainable processing of mining technological wastes. Min. Eng., 1 (2012), p. 75-88.Google Scholar

  • Stanojlovic R., Sokolovic J., Milosevic N., 2013. Integrated environmental pollution by wastes from Copper Mine Bor, Serbia. Environ. Eng. Manag J., (forthcoming in press).Google Scholar

  • Stirbanovic Z., Markovic Z. S., Stanojlovic R., Sokolovic J., 2008. World experience in the processing of smelter slag as examples of economic and environmental feasibility. In: Proceedings of XVI Ecological Truth 2008, Sokobanja, Serbia, p.197-201.Google Scholar

  • Stirbanovic Z., Markovic Z., 2011. The Effect of Copper Bearing Particles Liberation on Copper Recovery from Smelter Slag by Flotation. Sep. Sci. Technol., 46 (16), p. 2496-2500.CrossrefGoogle Scholar

  • Tomlinson H. S., Fleming M. G., 1963. Flotation rate studies. In: Proceedings of VI IMPC, Cannes, Pergamon Press, Oxford - New York, p. 563-579.Google Scholar

  • Tumen F., Bailey N. T., 1990. Recovery of metal values from copper smelter slags by roasting with pyrite. Hydrometallurgy, 25, p. 317-328.CrossrefGoogle Scholar

  • USEPA, 1993. Slag Reprocessing, Magma Copper Company’s San Manuel Facility. Report to U. S. Environmental Protection Agency.Google Scholar

  • Xu M., 1998. Modified flotation rate constant and selectivity index. Miner. Eng., 11 (3), p. 271-278.CrossrefGoogle Scholar

  • Ziyadanogullari B., 2000. Recovery of copper and cobalt from concentrate and converter slag. Sep. Sci. Technol., 35, p. 1963-1971.CrossrefGoogle Scholar

About the article

Received: 2014-05-07

Published Online: 2014-10-20

This paper presents the results of the Projects TR 33007, “Implementation of modern technicaltechnological and environmental solutions in the existing production systems of the Copper Mine Bor and Copper Mine Majdanpek” and TR 33038 “Improving technology of exploitation and processing of copper ore with monitoring the living and working environment in the RTB Bor Group”, funded by Ministry of education, science and technological development of the Republic of Serbia. The authors are grateful to the Ministry for financial support.

Citation Information: Archives of Mining Sciences, Volume 59, Issue 3, Pages 821–834, ISSN (Online) 1689-0469, DOI: https://doi.org/10.2478/amsc-2014-0057.

Export Citation

© 2014 Archives of Mining Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in