Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Open Access
Online
ISSN
1689-0469
See all formats and pricing
More options …

Assessment of Self-Heating Susceptibility of Indian Coal Seams – A Neural Network Approach

D.C. Panigrahi / S.K. Ray
Published Online: 2014-12-17 | DOI: https://doi.org/10.2478/amsc-2014-0073

Abstract

The paper addresses an electro-chemical method called wet oxidation potential technique for determining the susceptibility of coal to spontaneous combustion. Altogether 78 coal samples collected from thirteen different mining companies spreading over most of the Indian Coalfields have been used for this experimental investigation and 936 experiments have been carried out by varying different experimental conditions to standardize this method for wider application. Thus for a particular sample 12 experiments of wet oxidation potential method were carried out. The results of wet oxidation potential (WOP) method have been correlated with the intrinsic properties of coal by carrying out proximate, ultimate and petrographic analyses of the coal samples. Correlation studies have been carried out with Design Expert 7.0.0 software. Further, artificial neural network (ANN) analysis was performed to ensure best combination of experimental conditions to be used for obtaining optimum results in this method.

All the above mentioned analysis clearly spelt out that the experimental conditions should be 0.2 N KMnO4 solution with 1 N KOH at 45°C to achieve optimum results for finding out the susceptibility of coal to spontaneous combustion. The results have been validated with Crossing Point Temperature (CPT) data which is widely used in Indian mining scenario.

W pracy omówiono możliwości wykorzystania metody elektro-chemicznej zwanej metodą określania potencjału utleniającego w procesie mokrym do określania skłonności węgla do samozapłonu. Dla potrzeb eksperymentu zebrano 78 próbek węgla z trzynastu kopalni w obrębie Indyjskiego Zagłębia Węglowego. Przeprowadzono 936 eksperymentów, w różnych warunkach prowadzenia procesu aby zapewnić standaryzację metody w celu jej szerszego zastosowania. Dla każdej próbki przeprowadzono 12 eksperymentów metodą badania potencjału utleniającego w procesie mokrym. Wyniki skorelowano z własnościami danego węgla przez przeprowadzenie badania petrograficznych i wytrzymałościowych parametrów węgla. Procedurę korelacji wykonano z wykorzystaniem oprogramowania Design Expert 7.0.0, następnie przeprowadzono analizę z wykorzystaniem sieci neuronowych w celu opracowania najkorzystniejszej kombinacji warunków eksperymentu do wykorzystania dla uzyskania optymalnych wyników.

Badania wykazały, że najkorzystniejsze warunki dla procesu to zastosowanie roztworu 0.2 N KMnO4 z 1 N KOH przy 45°C dla uzyskania optymalnych wyników określania skłonności pokładów do samozapłonu. Walidację wyników przeprowadzono w oparciu o wyniki badania metodą określania temperatury przejścia (Crossing Point Temperature), szeroko stosowaną w przemyśle wydobywczym w Indiach.

Keywords : wet oxidation potential; spontaneous heating; correlation studies; artificial neural network analysis; CPT

Słowa kluczowe : metoda badania potencjału utleniającego w procesie mokrym; samozapłon; badanie korelacji; sztuczne sieci neuronowe; temperatura przejścia

References

  • Arief A.S., Gillies A.D.S., 1995. A practical test of coal spontaneous combustion. [In:] Proceedings of The AusIMM Annual Conference, Newcastle, p. 111-114.Google Scholar

  • ASTM D 5373, 1993. Standard test methods for instrumental determination of carbon, hydrogen and nitrogen in laboratory samples of coal and coke.Google Scholar

  • Banerjee S.C., 2000. Coal catogorisation vis-à-vis spontaneous fire risk, Prevention and Combating Mine Fires. Special Indian edition, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, 67-113.Google Scholar

  • Banerjee S.C., Nandy D.K., Banerjee D.D., Sen S.K., 1988. Spontaneous fire risk rating of a colliery proposed to be developed by short wall method of mining. [In:] Proceedings of Fourth International Mine Ventilation Congress, Brisbane, Queensland, July, 365-373.Google Scholar

  • Baris K., Kizgut S., Didari V., 2012. Low temperature oxidation of some Turkish coals. Fuel, 93: 423-432.Google Scholar

  • Beamish B.B., Arisoy A., 2008. Effect of intrinsic coal properties on self-heating rates. [In:]12th US/North American Mine Ventilation Symposium, Wallace (ed), 149-15: 125-130.Google Scholar

  • Cygankiewicz J., 2000. About determination of susceptibility of coals to spontaneous combustion using an adiabatic test method. Arch. Min. Sci., Vol. 45, No 2, p. 247-273.Google Scholar

  • Cygankiewicz J., Dudzińska A., Żyła M., 2006. The relationship between the specific surface area of coal determined by nitrogen and carbon dioxide sorption and the susceptibility of coal to spontaneous combustion. Arch. Min. Sci., Vol. 51, No 2, p. 151-161.Google Scholar

  • Feng K.K., Chakravarty R.N., Cochrane T.S., 1973. Spontaneous combustion - a coal mining hazard. CIM Bulletin, October, p. 75-84.Google Scholar

  • Ghosh R., 1986. Spontaneous combustion of certain Indian coals - some physico-chemical considerations. Fuel, 65:1042-1046.Google Scholar

  • Gouws M.J., Knoetze T.P., 1995. Coal self-heating and explosibility. The Journal of South African Institute of Mining and Metallurgy, Jan-Feb, p. 37-43.Google Scholar

  • Gouws M.J., Wade L., 1989. The self-heating liability of coal: prediction based on composite indices. Mining Science and Technology, 9, p. 81-85.Google Scholar

  • Hao Y., Wilamowski B.M., 2010. Levenberg-Marquardt Training, Auburn University, www.eng.auburn.edu/~wilambm/pap/2011/K10149_C012.pdf http://en.wikipedia/wiki/coal_seam_fire Google Scholar

  • ICCP (International Committee for Coal and Organic Petrology). 1971. International handbook of coal petrology. 2nd edition, C.N.R.S., Paris.Google Scholar

  • ICCP (International Committee for Coal and Organic Petrology). 1994. Vitrinite Classification. C.N.R.S., Paris.Google Scholar

  • Indian Standard: 436, 1964. Methods of sampling of coal and coke. p. 24.Google Scholar

  • Indian Standard: 1350, Part-I, 1969. Methods of Test for Coal and Coke: Proximate Analysis. p. 5-18.Google Scholar

  • Indian Standard: 9127 Part-I. 1979. Methods for petrographic analysis of coal. p. 5-7.Google Scholar

  • Indian Standard: 9127 Part-II. 1979. Methods for petrographic analysis of coal - Preparation of coal samples for petrographic analysis. p. 4-8.Google Scholar

  • Kaymakci E., Didari V., 2002. Relations between coal properties and spontaneous combustion parameters. Turkish Journal of Engineering & Environmental Sciences, 26, p. 59-64. Google Scholar

  • Kim C.J., Sohn C.H., 2012. A novel method to suppress spontaneous ignition of coal stockpiles in a coal storage yard. Fuel Processing Technology, 100, p. 73-83.Google Scholar

  • Kuchta J.M., Rowe V.R., Burgess D.S., 1980. Spontaneous combustion susceptibility of US coals. RI 8474, 37 p.Google Scholar

  • Mahadevan V., Ramlu M.A., 1985. Fire risk rating of coal mines due to spontaneous heating. Journal of Mines, Metals and Fuels, August, p. 357-362.Google Scholar

  • Misra B.K., Singh B.D., 1994. Susceptibility to spontaneous combustion of Indian coals and lignites: an organic pterographic autopsy. International Journal of Coal Geology, 25, p. 265-286.Google Scholar

  • Nandy D.K., Banerjee D.D., Chakravorty R.N., 1972. Application of crossing point temperature for determining the spontaneous characteristics of coals. Journal of Mines, Metals & Fuels, February, p. 41-48.Google Scholar

  • Ogunsola O.I., Mikula R.J., 1990. A study of spontaneous combustion characteristics of Nigerian coals. Fuel, 70, p. 258-261.Google Scholar

  • Ozdeniz A.H., 2010. Determination of spontaneous combustion in industrial-scale coal stockpiles. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32, p. 665-673.Google Scholar

  • Panigrahi D.C., Saxena V.K., Udaybhanu G., 1999. Research project report: Development of handy method of coal categorisation and prediction of spontaneous fire risk in mines. Department of Mining Engineering, ISM, Dhanbad, Vol. 1, Dec., p. 5-23.Google Scholar

  • Panigrahi D.C., Saxena V.K., Udaybhanu G., 2000. A study of susceptibility of Indian coals to spontaneous combustion and its correlation with their intrinsic properties. [In:] Proceedings of First International Conference on Mine Environment and Ventilation, ISM, Dhanbad, 347-353.Google Scholar

  • Panigrahi D.C., Sahu H.B., Udayabhanu G., Saxena V.K., 2004. Wet oxidation method for predicting the spontaneous heating susceptibility of Indian coals. Coal Mining Technology and Management, June-August, 13-21.Google Scholar

  • Pattanaik D.S., Behera P., Singh B., 2011. Spontaneous combustion characterization of the Chirimiri coals, Koriya District, Chhattisgarh, India. International Journal of Geosciences, 2, p. 336-347.Google Scholar

  • Peters W.C., 1978. Exploration and Mining Geology. John Wiley and Sons Inc, New York, p. 416-425.Google Scholar

  • Qilin H., Shujie J., 2004. The laboratorial researches on the rate of oxygen consumption by coal during its self-heating. Arch. Min. Sci., Vol. 49, No 3, p. 359-370.Google Scholar

  • Sahu H.B., Mahapatra S.S., Panigrahi D.C., 2009. An empirical approach for classification of coal seams with respect to the spontaneous heating susceptibility of Indian coals. International Journal of Coal Geology, 80, p. 175-180.Web of ScienceGoogle Scholar

  • Singh A.K., Singh R.V.K., Singh M.P., Chandra H., Shukla N.K., 2007. Mine fire gas indices and their application to Indian underground coal mine fires. International Journal of Coal Geology, 69, p. 192-204.Web of ScienceGoogle Scholar

  • Singh R.N., Denby B., Ren T.X., 1990. A knowledge-based system for assessing spontaneous combustion risk in longwall mining. Mining Science and Technology, 11, p. 45-54.Google Scholar

  • Skotniczny P., 2008. Three-dimensional distribution of temperature and gas concentration in longwall drifts accompanying the phenomenon of self-combustion of coal deposited in longwall goafs. Arch. Min. Sci., Vol. 53, No 2, p. 235-255.Google Scholar

  • Tarafdar M.N., Guha D., 1989. Application of wet oxidation processes for the assessment of the spontaneous heating of coal. Fuel, 68, 315-317.Google Scholar

  • Xuyao Q., Wang Deming., Milke James A., Zhong Xiaoing, 2011. Crossing point temperature of coal. Mining Science and Technology (China) 21, p. 255-260.Google Scholar

  • Yuan L., Smith A.C., 2012. The effect of ventilation on spontaneous heating of coal. Journal of Loss Prevention in the Process Industries, 25, p. 131-137. Google Scholar

About the article

Received: 2013-09-30

Published Online: 2014-12-17

Published in Print: 2014-12-01


Citation Information: Archives of Mining Sciences, Volume 59, Issue 4, Pages 1061–1076, ISSN (Online) 1689-0469, DOI: https://doi.org/10.2478/amsc-2014-0073.

Export Citation

© Archives of Mining Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
N. K. Mohalik, E. Lester, and I. S. Lowndes
International Journal of Mining, Reclamation and Environment, 2017, Volume 31, Number 5, Page 301
[2]
Subhash Kumar, P. K. Mishra, and Jitendra Kumar
Combustion Science and Technology, 2017, Volume 189, Number 9, Page 1527

Comments (0)

Please log in or register to comment.
Log in