Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Open Access
Online
ISSN
1689-0469
See all formats and pricing
More options …

Process Characteristics Of Hydraulic Legs Equipped With Safety Valves At Dynamic Load Caused By A Mining Tremor

CHARAKTERYSTYKI PRACY STOJAKÓW HYDRAULICZNYCH Z ZAWORAMI BEZPIECZEŃSTWA PRZY OBCIĄŻENIU DYNAMICZNYM WYWOŁANYM WSTRZĄSEM GÓROTWORU

Andrzej Pytlik
Published Online: 2015-07-27 | DOI: https://doi.org/10.1515/amsc-2015-0039

Abstract

The article presents process characteristics of hydraulic legs, a powered roof support and an individual roof support that are equipped with pressure relief valves and additional safety valves protecting the legs against dynamic loads caused by mining tremors.

A two-telescopic hydraulic leg ϕ330 type was tested using dynamic pile testing, equipped with a valve bank with pressure relief valve and an additional safety valve. The tests included the following models of safety valves described in references (Gwiazda, 1997; Irresberger et al., 2008):

  • – slide-piston with a roller spring,

  • – seat-cone with gas spring,

  • – slide-piston with a roller spring,

  • – two-stage valve (a control valve and a main valve connected in one support).

Using pressure charts in time function it is possible to determine how fast the amplitudes of pressure increase with the h height of a ram increase, thereby, Ek kinetic energy of ram’s stroke and p momentum impacting the leg equipped with the valve. Maximum pressure in the leg with the slide-piston valve raised to 64 MPa (with impact mass drop at h = 0.25 m) up to 129 MPa (h = 0.3 m) i.e. by 100%.

Pressure increase to pmax = 158 MPa was noted during a test of the slide-piston leg equipped with the valve and with a drop of h = 0.5 m This poses a great hazard that can destroy the valve and therefore cause a loss of load-bearing capacity.

Conducted research of SHC hydraulic legs of an individual roof support showed that (Pytlik & Pacześniowski, 2012; Pytlik & Rabsztyn, 2011) quick relief valves had higher efficiency than standard valves mounted in SHC legs, which resulted in lower pressure in the leg by 7 MPa. It has an essential importance for stability of leg’s cylinder and its sealing. The test of the leg with a valve battery was based on its dynamic load impacted by a ram (impact mass) of m1 = 4,000 kg relieved at the leg placed between a cross-bar of m2 = 3,300 kg and post’s foundation. Recording of p pressure of the fluid in its space under piston was made with sampling frequency of 9.6 kHz,

Moreover, the research also included test of the same type of SHC leg with BZG-2FS battery (equipped with gas spring) using ram’s mass of m1 = 2,0000 kg and the cross-bass of m2 = 6,600 kg. The leg transferred the load, stroke type, of Ek = 29,5 kJ kinetic energy without any damages. A time-lapse analysis of photos showing the opening moment of the safety valve indicated that its opening had taken place 8 ms after the moment when the leg was impacted and indicated propagation of the hydraulic fluid stream’s front with maximum velocity of about 60 m/s, and maximum momentary intensity of fluid flowing through a bypass valve amounted to Qc max = 683 l/min.

The tests of work characteristics of safety valves (Pytlik, 2013, 2014) included valves with M40×2 terminal thread of the following designs:

  • – slide-piston – with three rows of fluid outlets,

  • – slide-piston – with two rows of fluid outlets,

  • – seat-cone – with a single row of fluid outlets.

The tests of valves were conducted on the basis of capacity research methodology based on fluid increase of fluid stream caused by mass stroke impacting the leg equipped with the valve, up to twice the working pressure adjusted value of the valve. Such test simulates dynamic load of the hydraulic leg with the valve during mining tremors. Tests results of capacity and valve opening time may be used to determine yielding of an individual powered roof support and to optimize valve construction in order to improve capacity and working time. On the basis of carried out research concerning momentary intensity of Qc flow of safety valves with M40×2 terminal, it may be stated that the valves are characterised by a high level of capacity, presented on charts, and short working time – 3 up to 5 ms. The best technical parameters had a prototype seat-cone valve.

W artykule przedstawiono charakterystyki pracy stojaków hydraulicznych, obudowy zmechanizowanej i indywidualnej, wyposażonych w zawory przelewowe oraz dodatkowe zawory bezpieczeństwa chroniące stojaki przed przeciążeniami dynamicznymi spowodowanymi wstrząsami górotworu.

Badaniom przy obciążeniu dynamicznym, w kafarowym stanowisku badawczym, poddano dwuteleskopowy stojak hydrauliczny ϕ 320, wyposażony w stojakowy blok zaworowy z zaworem przelewowym oraz dodatkowym zaworem bezpieczeństwa. W badaniach wykorzystano zawory bezpieczeństwa opisane w literaturze (Gwiazda, 1997; Irresberger i in., 2008) o konstrukcji:

  • – suwakowo-tłokowej ze sprężyną walcową,

  • – gniazdowo-stożkowej ze sprężyną gazową,

  • – suwakowo-tłokowej ze sprężyną walcową,

  • – zaworu dwustopniowego (zawór sterujący oraz zawór główny połączone w jednej obudowie).

Na podstawie wykresów ciśnienia w funkcji czasu można określić jak szybko rosną amplitudy pików ciśnienia ze wzrostem wysokości h spadku bijaka, a tym samym energii kinetycznej Ek udaru bijaka i pędu p w stojak z zaworem. Maksymalne ciśnienie w stojaku z zaworem o konstrukcji suwakowo-tłokowej wzrosło z ciśnienia o wartości 64 MPa (przy wysokości spadku masy udarowej h = 0,25 m) do 129 MPa (przy h = 0,3 m) – tj. o 100%.

Podczas badanie stojaka z zaworem o konstrukcji suwakowo-tłokowej, przy wysokości spadku h = 0,5 m stwierdzono wzrost ciśnienia do wartości pmax = 158 MPa. Stanowi to poważne zagrożenie zniszczenia konstrukcji zaworu, a tym samym utraty podporności przez stojak obudowy.

Na podstawie analizy charakterystyk pracy p = f(t) zaworów bezpieczeństwa, obrazujących zmiany wartości ciśnienia w podtłokowej przestrzeni dwuteleskopowego stojaka hydraulicznego ϕ320 podczas obciążania dynamicznego można stwierdzić, że jedynie zawory o konstrukcji suwakowo-tłokowej (z dwoma rzędami otworów wylotowych) oraz gniazdowo-stożkowej, pracowały prawidłowo podczas wszystkich prób i nie wykazywały pulsacji ciśnienia. W przypadku zaworów o konstrukcji suwakowo-tłokowej (z jednym rzędami otworów wylotowych) oraz dwustopniowej, stwierdzono znaczne pulsacje ciśnienia, których skutkiem może być cykliczne przerywanie strugi cieczy w wyniku drgań tłoczka podlegającego z jednej strony naciskowi sprężyny, a z drugiej strony naciskowi wywołanemu ciśnieniem cieczy na wlocie strugi cieczy do zaworu. W przypadku zaworu dwustopniowego, przyczyna pulsacji może być związana z różnymi stałymi czasowymi dwóch zaworów – sterującego i głównego – umieszczonych w jednej obudowie. Prowadzi to do opóźnienia otwarcia zaworu (Sosnica, 2008), co jest główną przyczyną tego, że zawory dwustopniowe wykazują w badaniach dynamicznych dłuższe czasy otwarcia od zaworów konstrukcji jednostopniowej. Stwierdzone zjawisko powstawania pulsacji ciśnienia może w znacznym stopniu przyczyniać się do obniżenia trwałości stojaka oraz hydraulicznych elementów sterowania sekcji obudowy zmechanizowanej, podczas jej pracy w wyrobisku ścianowym, gdzie obciążenie dynamiczne sekcji wynika nie tylko ze wstrząsów górotworu, ale i z technologii wydobycia.

Przeprowadzone badania stojaków hydraulicznych typu SHC obudowy indywidualnej wykazały (Pytlik i Pacześniowski, 2012; Pytlik i Rabsztyn, 2011), że szybkoupustowe baterie zaworowe miały większą skuteczność działania od standardowych baterii montowanych w stojakach SHC, co skutkowało zmniejszeniem ciśnienia w stojaku o 7 MPa. Ma to istotne znaczenie dla wytrzymałości cylindra stojaka oraz jego uszczelnień. Badanie stojaka z baterią zaworową polegało na jego dynamicznym obciążeniu poprzez opuszczenie bijaka (masy udarowej) o masie m1 = 4000 kg na stojak rozparty w stanowisku pomiędzy trawersą o masie m2 = 3300 kg, a podstawą stanowiska. Rejestrację ciśnienia p cieczy w jego przestrzeni podtłokowej wykonywano z częstotliwością próbkowania 9,6 kHz,

Przeprowadzono również badanie tego samego typu stojaka SHC z baterią typu BZG-2FS (ze sprężyną gazową) przy użyciu masy bijaka m1 = 20000 kg i trawersy o masie m2 = 6600 kg. Stojak przeniósł bez zniszczenia obciążenie o charakterze udarowym o wartości energii kinetycznej równej Ek = 29,5 kJ. Analiza poklatkowa zdjęć obrazujących moment otwarcia zaworu bezpieczeństwa wykazała, że jego otwarcie nastąpiło po czasie 8 ms od momentu obciążania stojaka oraz propagację czoła wypływającej strugi cieczy hydraulicznej z prędkością maksymalną ok. 60 m/s, a maksymalne chwilowe natężenie przepływu cieczy przepływającej przez zawór przelewowy wyniosło Qc max = 683 l/min.

Podstawowym środkiem zabezpieczającym sekcję obudowy zmechanizowanej podczas zjawisk sejsmicznych, indukowanych działalnością górniczą, jest zawór bezpieczeństwa ograniczający ciśnienie w stojakach i podporach hydraulicznych (Gwiazda, 1997; Jacobi, 1981; Klishin i Tarasik, 2002; Stoiński, 1998;). Głównymi parametrami zaworów bezpieczeństwa są czas jego otwarcia oraz przepustowość, która rozumiana jest jako objętościowe natężenie przepływu (Pospolita, 204) cieczy przepływającej przez zawór.

Do badań charakterystyk pracy zaworów bezpieczeństwa (Pytlik, 2013; Pytlik, 2014), wytypowano zawory z przyłączem gwintowym M40×2 o następujących konstrukcjach:

  • – suwakowo-tłokowej – z trzema rzędami otworów wylotowych cieczy,

  • – suwakowo-tłokowej – z dwoma rzędami otworów wylotowych cieczy,

  • – gniazdowo-stożkowej – z jednym rzędem otworów wylotowych cieczy.

Badania zaworów przeprowadzono na podstawie metodyki badań przepustowości, która polega na impulsowym wzroście ciśnienia strumienia cieczy, wywołanym udarem masy w stojak z zaworem, do wartości 2 krotności ciśnienia roboczego na które nastawiony jest zawór. Taki rodzaj badania symuluje obciążenie dynamiczne stojaka hydraulicznego z zaworem podczas zjawiska tąpnięcia. Wyniki badań przepustowości i czasu otwarcia zaworów mogą być wykorzystane do wyznaczania upodatnienia sekcji obudowy zmechanizowanej oraz do optymalizacji konstrukcji zaworów w celu poprawy przepustowości i szybkości działania.

Na podstawie przeprowadzonych badań chwilowego natężenia przepływu Qc zaworów bezpieczeństwa z przyłączem M40×2 można stwierdzić, że zawory te posiadają dużą przepustowość, którą zobrazowano na wykresach oraz krótki czas działania – od 3 do 5 ms. Najlepszymi parametrami technicznymi wykazał się prototypowy zawór konstrukcji gniazdowo-stożkowej.

Keywords: powered roof support; individual roof support; hydraulic legs; bypass valves; safety valves; capacity

Słowa kluczowe: obudowa zmechanizowana; obudowa indywidualna; stojaki hydrauliczne; zawory przelewowe; zawory bezpieczeństwa; przepustowość

References

  • Dubiński J., Konopko W., 2000. Tąpania: ocena, prognoza, zwalczanie [Tremors: evaluation, forecast, elimination]. The Central Mining Institute. KatowiceGoogle Scholar

  • Dubiński J., Mutke G., 1996. Characteristics of mining tremors within the near-wave field zone. PAGEOPH., Vol. 147, No. 2, s. 249-261. DOI: 10.1007/BF00877481CrossrefGoogle Scholar

  • Guillon M., 1967. Teoria i obliczanie układów hydraulicznych [The theorr and calculations of hydraulic units]. Wydawnictwo Naukowo-Techniczne, Warszawa.Google Scholar

  • Gumuła S., 2005. A new concept of hydraulic mechanized supports resistant to the crumps. Archives of Mining Sciences, 50, 3 (2005), 275-288.Google Scholar

  • Gwiazda J.B., 1997. Górnicza obudowa hydrauliczna odporna na tąpania [Tremor resistant mining roof support]. Katowice. Wydaw. „Śląsk”.Google Scholar

  • Irresberger H., Gräwe F., Migenda P., 2008. Obudowy zmechanizowane. [Powered Roof Supports]. Katowice. Tiefenbach Polska Sp. z o.o., 2008.Google Scholar

  • Jacobi O., 1981. Praxis der Gebirgsbeherrschung 2. Auflage. Essen. Verlag Glückauf GmbH.Google Scholar

  • Klishin V.I., Tarasik T.M., 2002. Badania doświadczalne i opracowanie środków ochrony stojaków hydraulicznych przed obciążeniami dynamicznymi [Experimental research and design of measurement protecting hydraulic legs against dynamic loads]. International Symposium on Science and Technology, Tremors, 2002. Research and Prevention Condition. The Central Mining Institute. Katowice, 127-138.Google Scholar

  • Krumnacker I., Kleefeld R., 1985. Bemessungsgrundlagen für hydraulische Grubenstempel unter Belastung von Gebirgsschlägen. Glückauf – Forschungshefte nr 5, p. 237-244.Google Scholar

  • Mutke G., Lurka A., Dubiński J., 2009: Seismic monitoring and rock burst hazard assessment in Deep Polish Coal Mines – Case study of rock burst on April 16, 2008 in Wujek-Slask Coal Mine. 7th International Symposium on Rockburst and Seismicity in Mines (RASiM 7): Controlling Seismic Hazard and Sustainable Development of Deep Mines. C.A. Tang (ed.). Rinton Press. pp. 1413-1424.Google Scholar

  • PN-EN 1804-2+A1 Standard: 2012 – Machines for underground mining – Safety requirements for powered roof supports – Part 2: Power set legs and rams.Google Scholar

  • PN-EN 1804-3+A1 Standard: 2012 – Machines for underground mining – Safety requirements for powered roof supports – Part 3: Electrohydraulic control.Google Scholar

  • Olaszowski W., Kornecka A., Podgórski B., Hanaś A., 1976. Wstępne rozpoznanie parametrów tąpań stropowych i warunków współpracy obudowy z górotworem [Preliminary identification of parameters of roof crumps and conditions for cooperation of a roof support and rockmass]. Mechanizacja i Automatyzacja Górnictwa, 12, 48-56.Google Scholar

  • Pospolita J., 2004. Pomiary strumieni płynów [Fluid flow measurements]. Opole University of Technology. Studia i monografie, z. 154, Opole.Google Scholar

  • Pytlik A.,, 2013. Stanowiskowe badania przepustowości zaworów bezpieczeństwa stojaków obudowy zmechanizowanej przy impulsowym wzroście ciśnienia symulującym tąpnięcie [Bench testing of capacity level of safety valves in powered roof support at impulsive increase of pressure simulating a tremor]. Przegląd Górniczy, 07 (1088), June 2013, Katowice, 28-34.Google Scholar

  • Pytlik A., 2014. Badania porównawcze przepustowości zaworów bezpieczeństwa stojaków obudowy zmechanizowanej przy impulsowym wzroście ciśnienia symulującym tąpnięcie [Comparison tests of capacity level of safety valves in powered roof support at impulsive increase of pressure simulating a tremor]. Report of works conducted within statutory practice of the Central Mining Institute. No. 11230144 – 180. Unpublished thesis.Google Scholar

  • Pytlik A., Pacześniowski K., Rabsztyn J., 2012. Nowa generacja szybkoupustowych dwufunkcyjnych baterii zaworowych do stojaków typu SHC pracujących w warunkach tąpań [A new generation of quick-relieve, dual-function valve batteries for hydraulic props type SHC operating in rockbursts hazard conditions]. Wiadomości Górnicze, 1/2012. Wydawnictwo Górnicze Sp. z o.o., Katowice, 678-684.Google Scholar

  • Pytlik A., Rabsztyn J., 2011: Szybkoupustowa bateria zaworowa do stojaków typu SHC pracujących w warunkach tąpań [Quick relief valve batterries for hydraulic props type SHC operating in rockbursts hazard conditions]. Prace Naukowe GIG, Górnictwo i Środowisko, Kwartalnik, 4/2/2011, Górnicze Zagrożenia Naturalne 2011, Człowiek – Zagrożenie i Bezpieczeństwo, Katowice, 416-422.Google Scholar

  • Shein Y.G., 2002. Dynamiczne obciążenia zmechanizowanej obudowy ścianowej [Dynamic load of powered roof support]. Maszyny Górnicze, R. 20, no. 4. Instytut Techniki Górniczej KOMAG, Gliwice, 39-41.Google Scholar

  • Sosnica J., 2008. Wpływ doboru wybranych rozwiązań konstrukcyjnych zaworów upustowych na upodatnienie zmechanizowanych hydraulicznych obudów ścianowych [The influence of selected design solutions of relief valve on yielding of powered roof supports]. Doctoral thesis. AGH University of Science and Technology in Krakow. Faculty of Mechanical Engineering and Robotics. Department of Mining Process and Transport Machines, Krakow.Google Scholar

  • Stoiński K., 1998. Selection of hydraulic prop longwall support for work in conditions of rock mass tremors hazard. Archives of Mining Sciences, 43, 3, 471-486, Kraków. Kraków.Google Scholar

  • Stoiński K., 2000. Obudowy górnicze w warunkach zagrożenia wstrząsami górotworu [Mining roof support in hazardous conditions of mining tremors]. The Central Mining Institute, Katowice.Google Scholar

  • Stoiński K., 2008. Praktyczne aspekty upodatnienia obudowy zmechanizowanej [Practcal aspects of powered roof support’s yielding]. Napędy i sterowanie, 7/8, Racibórz.Google Scholar

  • Stoiński K., Pytlik A., 2006. Metody oceny upodatnienia sekcji zmechanizowanej obudowy ścianowej [Assesment method for yielding of a powered roof support]. XIII International Conference on Science and Technology Mining Natural Hazards, 2006. Exploitation depth and mining hazard The Central Mining Institute, Katowice, 337-344.Google Scholar

  • Szurgacz D., 2011. Próba określenia dynamicznej mocy stojaka zmechanizowanej obudowy ścianowej przeznaczonego do pracy w warunkach zagrożenia wstrząsami górotworu – artykuł dyskusyjny [An attempt to determine the dynamic power of powered roof support leg designed to work in hazardous conditions of mining tremors – discussion article]. Central Mining Institute Research Papers. Górnictwo i Środowisko. 1/2011 The Central Mining Institute, Katowice, 79-87.Google Scholar

  • Szurgacz D., 2013. Zmodyfikowana metoda doboru zmechanizowanej obudowy ścianowej do pracy w warunkach zagrożenia wstrząsami górotworu [A modified method for powered roof support selection to work in hazardous conditions of mining tremors]. Doctoral thesis. The Central Mining Institute, Katowice.Google Scholar

  • Szweda S., 2001. Loadings of legs in sections of mechanised supports by dynamic movements of roof and floor. Archives of Mining Sciences 46, 3 (2001), 237-266.Google Scholar

  • Szweda S., 2004. Identyfikacja parametrów charakteryzujących obciążenie sekcji obudowy zmechanizowanej spowodowane dynamicznym oddziaływaniem górotworu. [An identification of parameters characterising the load of powered roof support section cause by dynamic impact of rockmass]. Zeszyty Naukowe Politechniki Śląskiej, 1648. Gliwice.Google Scholar

About the article

Received: 2015-02-17

Published Online: 2015-07-27

Published in Print: 2015-06-01


Citation Information: Archives of Mining Sciences, Volume 60, Issue 2, Pages 595–612, ISSN (Online) 1689-0469, DOI: https://doi.org/10.1515/amsc-2015-0039.

Export Citation

© Archives of Mining Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in